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PART I: INTRODUCTION TO LINEAR ALGEBRA

Chapter 1. Vectors and Vector Spaces

Introduction

Some of the things we measure are determined by their magnitudes. To record
mass, length or time for example , We need only to write down a number and name an
appropriate unit of measure.But we need more information to describre force ,
displacement or velocity. To describe force we need to record the direction in which it
acts as well as how large it is . To describe a body’s disp[alcement , we have to say in
what direction it moves as well as how far. To describe a body’s velocity, we have to
know where the body is headed as well as how fast it is going.

Quantities that have direction as well as magnitude are usually represented by
arrows that point in the direction of the action and whose lengths give the magnitude of
the action in terms of a suitably chosen unit.. When we discuss these arrows abstractly ,
we think of them as directed line segments and we call them vectors and their study
comprises this chapter. Here we focus on the in n-vectors i.e n-dimensional vectors R".

The concept of a vector is basic for the whole module. It provides geometric
motivation for everything that follows. Hence the properties of vectors, both algebraic
and geometric, will be discussed in full. That is points in R". Scalar product and vector
product are also studied here. So points in %% and %> can be treated as a special case for
R". Geometrical interpretations are also presented whenever necessary.

The cross (vector) product is included for the sake of completeness. It is the only
aspect of the theory of vectors which is valid only in 3-dimensional space (not 2, nor 4,
nor n-dimensional space)
In the final section of this unit, you will study how to write equation of a line and
equation of a plane in 2 and 3- dimensional vector space.
At the end of this unit , you will be able to

Plot a point in space

Interpret vectors geometrically

Determine whether two or more vectors are parallel or not
Find the norm of a vector
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Find the angle between two vectors

Find the projection of one vector onto the other

Describe vectors and their properties

Calculate the scalar product and vector (cross) product of vectors

Calculate norm of a vector, angle between vectors and projection of vectors
Write equation of a line and equation of a plane

Calculate area of a parallelogram and volume of parallelepiped using dot
product and vector product

1.1 Definition of points in n-space

A natural way in which vectors arise is in simultaneous study of several
characteristics of an individual. Suppose we want to study a; = height , a, = weight ,az =
age and a,= blood pressure of an individual. The values of all these can together be
represented by an ordered 4-tuple A= (a1,a2,a3,a4) Which can be viewed as an element of
R,

Definition 1.1.1:Suppose A=(a;, az, .....,an) and B =(by, b2, .....,by) be two points in
n-space and ceR.

a) A+B:(a1+ b1, 3.2+b2, .....,an+bn)
b) cA= (ca;,caz, .....,cay)

Example 1.1.1: LetA=(-1,3,6,2),B=(0,-5,-1,4), C =(2,-1,3) and D = (0,0,0,0)

Finda) A+B
b)A+C
c) -2A
dB+D

Solution

a) A+ B =(-1+0,3+-56+-1,2+4) = (-1,-2,5,6)

b) A + Cis not defined because A is a 4 dimensional space while C isa 3
dimensional space.

c) -2A=-2(-1,3,6,2) = ((-2)(-1), (-2)(3) , (-2)(6) , (-2)(2)) = (2,-6,-12,-4)

d) B+ D=(0,-5,-1,4) + (0,0,0,00=(0+0,-5+0, -1+0,4+0) =(0,-5,-1,4)

Definition 1.1.2: Suppose A and B be two points in n-space , we define A - B = A +(-
B)

Example 1.1.2: Let A=(4,1,0,2,3),B=(0,1,-4,8,-3). Find A-B
Solution
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By definition,
A-B =A+(-B)
-B =(-1)B=(0,-1,4,-8,3)
A-B=A+(-B)
=(4,1,0,2,3) + (0,-1,4,-8,3)
= (4,0,4,-6,6)

Activity 1.1.1

a.) Graph the XY- plane and draw the points on a square sheet of paper.

i) (-1,3) i) (0,4) iii) (1,5)
b. )Define what do we mean by there is a one to one correspondence between a point in a
plane and ordered pair of real numbers .

c) Graph a three dimensional space in your square sheet of paper and draw the points
i) (1,0,0) i) (0,3,0) iii) (-1,1,0) iv) (-1,1,1)

Theorem 1.1.1 Properties

Suppose A, B and C are points represented by n tuple and o, €R
1) A+B=B+A
2)A+([B+C)=(A +B)+C
3)a(A+B)=a A+aB=(A+B)a
4) (atB)A=a A+ A
5) a(f A)= (aB)A
6)A+0=0+A=A
7)L.A=Aand-1. A=-A
8) A+(- A)=0

Proof :
Let A=(a;,a2,.....,a5) andB=(by,b,,.....by) andC=(c1,C2,......cn) be
three points in n-space and o, €*R.

1. A+B=(ay+ by, ap+ by, .....,ay +b,) by definition
=(bi+a;, by+ay, ....., by +a,) Since addition is commutative in the set
of
real numbers
=B+ A Dby definition

2. A+(B+C)=(a;,az,..,an) *(b1+c1, ba+cy, ....., b+ Cp)
= (al +[b1+ Cl] ,do + [b2 +Co ], v an+[bn + Cn])
= ([a1 +b1] +c1, [A2 +b2 ]+Co, .., [anthn ]+ Cn)
= (al +b1 , do +b2 . ,an+bn) + (C1 ,Co\inys Cn)
=(A+B)+C

3. a( A+B) = afagt by, ax+by, .....,ay+b,) by definition
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= (a[a1+ bl], (1[&2 + b, | R Ot[an‘l‘bn])

= (aastoaby, aa, + ab,, ....., aa,toby)

= (0ag, 0y ,.., 0dy) + (obyg, aby, .....,abp)
= a(al, a,.., an) + (bl, b,, .....,bn)

= cA+oB

4. (a+B)A =(a+B)(ar, a2, ..,an)

= ([oe +B]as, ([ +B] @z, ...[a +B]an)

= (ca; +Pag, aay +pay, ..,0a, +ay)
(0a1, 0dz, ..,0a, ) + (Bag,pay, ...fan)
o(a,az, .., an) +p(as, az, .., an)
oA + BA

S. OL(B A): OL(Bal 1Ba2! --aBan)
= (affai] , a[Bag], .., a[Ban])
= ([O(.B]a]_ ) [O('B]az 5 seees [OLB]an)
=ap(a, a, .., an)

= (ap)A

6, 7 and 8 are left as an exercise for the student.

1.2 Vectors in-space; Geometric interpretation in 2-and 3-spaces.

Activity 1.2.1

Draw a vector whose initial point is A and terminal point B .
a)A=(1,2)and B =(-2,0)
b) A=(0,-2)and B =(1,1)

Let us consider a vector in a plane. Let A = (a; ,a2) and B = (by ,b, ) where
dp ,do , bl ,b2 eR

b133.1+(b1- al)

bo=ax+ (b2- az)

B:(bl,bz):(a1+(b1- al),a2+(b2- az))
= (a1,a)+ (by1- a1, by- a)
=(a1,82) +[(b1,b2) +-1(a1,a)
=A+(B -A)

ThereforeB=A+ (B — A)

Activity 1.2.2 : LetA=(1,4),B =(-1,5),C=(2,1) and D=(0,2)
Find

aB-A b)D-C

Draw the vectors AB and CD on the coordinate plane.
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Definition 1.2.1 : A vector AB is determined by the points A and B where A is the
intial point and B is a terminal point

Definition 1.2.2: Suppose AB and CD be two vectors.We say AB is equivalent to
CD written AB = CD iff B —~A=D-C

Example1.2.1: LetA=(4,3) B=(2,-1) C=(1,2) and D = (-1,-2)
Find a)B-A

b)D-C

c) Determine whether or not AB is equivalent to CD .

d) Find a point P such that OP = AB
e) Can we always reduce any vector to equivalent vector whose initial point is
the origin?
Solution:

a)B-A=(2-1)+-1(4,3)=(2-4,-1-3) =(-2,-4)
b) D-C =(-1,-2)+-1(1,2) = (-1-1,-2 -2) = (-2,-4)
c)SinceB-A=D-C, AB = CD
d) Let P = (x,y). OP= AB ifand only if B-A=P-0O
B- A=(-2,-4) while P -0 =(x,y)
B-A=P-0 ifandonlyif (-2,-4) =(x,y)
That means P = (-2,-4)
e) yes

Remark : Every vector is equivalent to a vector whose initial point is the origin.

Example 1.2.2: Show that AB is equivalent to CD where A = (-1,0),B =(0,1),
C=(0,0)and D=(1,1)

Solution: B-A=(0,1)-(-1,0) =(1,1)
D-C=(11)- (0,00=(1,1)

SinceB-A=D-C, AB is equivalent to CD

Definition 1.2.3; Two vectors AB and CD are said to be parallel if there exists a
eR

suchthatB-A=ao(D - C)

Example 1.2.3 : Show that AB is parallel to CD where A = (-1,0),B =(0,1),
C=(0,0)and D =(1,1)

Solution: B—-A=(0,1) - (-1,0) =(1,2)
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D-C=(11)- (0,00=(1,1)
SinceB-A=1(D-C) , AB is parallel to CD.

Remark : Equivalent vectors are parallel.where a=1

Example1.24:lLetA=(164) ,B =(3,4,-2),C=(4,8,-1)and D =(1,11,8).
Determine whether or not AB is parallel to CD

Solution
B-A=(34,-2)-(1,6/4) = (3-1,4-6,-2-4)=(2,-2,-6)
D-C=(1118)-(4,8,-1)=(1-4,11-8,8-(-1))=(-3,3,9)
B-A=-23( D-C) a=-2/3

AB is parallel to CD

Activity 1.2.3: Let A=(-1,4,8) ,B =(3,-4,0),C =(-5,3,1) and D = (-4, 1,-1).
Show that AB is parallel to CD

Remark :
ifa> 0, AB and CD have the same direction.
iifa<0, AB and CD have opposite direction.

1.3 The Scalar product

Definition 1.3.1 LetA=(a;, a2, .....,an) and B=(b1, b,, ......by) be two vectors define
the scalar product or dot product A. B as
AB=a b+ aby+ ....+a,b,
cA= (ca;,caz,.....can)

Example 1.3.1 : Let A=(2,0,-1,2) ,B=(1,-1,3,5)and C=(1,-3,1)

Find a) A.B
b) B.A
c)AC
d) (A.B)C
e) (A-B).A

Solution :

a) AB=21+0.(-1)+(-1)3+25=2+0-3+10=9
b) BA=12+(-1)0+3.(-1)+52=2+0-3+10=9
¢) A.Cis not defined

d) (A.B) C=9(1,-3,1) =(9,-27,9)

e) (A-B)A

First letus find A - B.
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A-B= (20-12)-(1,-1,35) =(11, -4, -3)
(A-B).A=(11,-43).(2,0,-1,2)
=(1.2,1.0,(-4)(-2), 3.2)
=(2,0,8,6)
Theorem1.3.1: Let A, B and C be vectors in n dimensional space and o %R then

a) AAB=B.A
b)AB+C)=AB+AC=(B+C)A=B.A+C.A
c) (@A).B =a(A.B)=A(aB)= a(A.B)

d) AA>0 and A A=0ifandonly if A =0.

Proof:
Let A=(a;,a2,......,ay) andB=(by,b,,.....bp)and C=(c;,Cz2,......Cn)
be three vectors in n-dimensional space and o e®R .

a)AB=a; b+ a;b,+ ....+a,by,bydefinition
=byathyax +...... +bn ap,  multiplication is commutative
= B.A by definition

b)A(B+C)=a;(by+cy)+a(ba+cy)....+a, (b, +Cp)
=aib; +a; C1 + ap byt aCy +......+anby + anCy
= (albl + a, b+ .+a,b, )+ (3.1 C1+ axCy+...+ anCn)
=AB+A.C

) (aA). B = (aag,0ay, ...,0an).01, by, ......by)
=(aag)b; +(aaz)bo.+ .....+ (can)by
.= a; (aby )+ az (aby).+ ...+ ay (aby)

=A.(aB)
dAA=g a+ aa+ ...+a,a, by definition
za’+ a2+ ...+a>>0 since itisasum of non negative numbers.

A.A =0 if and only if each of the a; ‘s are zero . that is a; =0 for i = 1,2,...n. hence
A=0.

Activity 1.3.1: Let A=(0,4) and B = (1,0).Draw the vectors whose initial point is O
and terminal point is at A and B respectively

Find a)A.B
b) The angle between A and B
¢) Find two non zero vectors A and B such that A. B

A

A

Addis Ababa University , CNCS




v

Definition1.3.2: Two vectors A and B are said to be perpendicular (orthogonal )
Iff A.B=0.

Example 1.3.1 :Show that the vectors A =(1,3,2) and B =(-4,2,-1) are

perpendicular.

Solution : A.B =1.(-4)+3.2+2.(-1)=0
Hence A is perpendicular to B

Activity 1.3.2: Find the value of x such that the vectors A= (-1,4,5,2) and B
=(3,x,1,0) are perpendicular.

Activity 1.3.3: Which of the following pairs of vectors are perpendicular?
a) (-5,2,7) and (3,1,-2) b) (-1,1,1) and (3,2,1)

The norm of a vector

Definition1.3.3: Let A=(a;, a2, .....,an). The norm of the vector A denoted by ||A|| is
defined as ||A|| = VAA = \/al +a,” +..+a

Example 1.3.2: Let A =(-1,3,0,5) .Find the norm of A

Solution :Let A=(a;, a2 ,a3, as ) =(-1,3,0,5)
= a=-1, a2=3, a3 =0andas= 5

IAI= Ja’+a,2 +a,2 +a,” = \[(-1)? +3 +0° +52 = J1+9+0+25 =35

Example 1.3.3: Let A = (X,y,2)

Al = X? +y® +2?
Letw= /x> +y® [Al= VW2 +22 = /X2 +y2+7°

Theorem1.3.2 : Prove that
a) ||Al|#0if A=0

b) IAIl=-A ]
C) |loA|| = |o|JA]| where o eR
Proof :

LetA=(a;,az,.....,an). and o €N

a) Al = VAA = [a, 2+a," +...+a,
Since a;% + a,” + .....+a,° is a non negative number ||A||=0 if and only if &;,=0 for i =
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1,2,...n. Hence A =0

2

D) [FAIl = y/(-2)) + (-8,)7 +...+ (-a,)? = Ja, *+a," +...+a > =||A]

c)aA=o(a,az, ....,a,) =( aay, oy ..... ody)
laAll = /(aa,) 2+ (a8,)? +.... + (aa, )’

2 2
:\/a’zal ‘+a’a,” +.+a’a,

=Ja? (@, +a,’ +...+a,%)

— 2 2 2
=|al \/al +a," +.o.ta

=ladlIAl

Definition 1.3.4: A unit vector is a vector whose norm is 1 unit.
That is A is a unit vector iff || Al| =

Example 1.3.4: Let A= (N2/2,0, -\2/2)

1Al = J(W2/2)7 + (-V2/2) = [+ 1 =1

Examplel.3.5: Let A=0.| A||#0. Leta=|A|l

Consider the vector % Al % | :%|||A|| :%.a =1

So% =— is aunit vector in the direction of A because%l >0

And - %A is a unit vector in the opposite direction of A.

Example 1.3.6 : Find two unit vectors which are parallel to A where
a) A=(-3,0,2) b) A= (1,-4,2,1)

Solution

a) Al = /(=3) 2+0%+22 =13

A = -3,0,2
Nar = Fat3o2
d _%AH = _}/\/E (-3,0,2) are unit vectors which are parallel to
A=(-3,0,2)
b) Al = Y12+ (-4)?+27+12 = V22

1,421 d
Nal= iz @z a
—AA” =—}/\/Z (1,4,2,1) are unit vectors which are parallel to A= (1,-4,2,1)
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Definition 1.3.5 : The distance between two points A and B in n space is defined as

IA-Bll= (A-B)(A-B)

Example 1.3.7: Let A =(-1,2,-2) and B =(2,3,-1)

Solution: d=||A-B| = /(A-B)(A-B)
A-B=(-122)—(23,1)=(-1-2,2 -3, -2 (-1)) = (-3,-1,-1)
d=||A-B| = \/(A-B)(A-B) = /(-3-1-1)(-3-1-1) =/9+1+1 = /11

Example 1.3.8 : Let A =(1,2) and B =(3,-1).Find the distance between B and A.
Solution: d=||B-A ||
B-A=(3,-1)-(1,2) =(2,-3)

d=|B-A |[=42%+(-3) =J/4+9=413

Theorem 1.3.3: Given A and B pointsinn-space |A+B | =||A-B|iff ALB
Proof :

(=) Suppose |[A+B|[=||A-B]|
= J(A+B)(A+B) = ,/(A-B)(A-B)
Squaring both sides
(A+B)(A+B) = (A - B)(A- B)
= A’+2AB+B? =A%- 2AB +B?
—4AB=0
= AB=0
=A1B
(<) SupposeALB .AB=0
— 2AB =-2AB
= A’+2AB+B? =A%- 2AB +B?
—=(A+B)? =(A-B)’
= J(A+B)(A+B) = ./(A-B)(A-B)
=||A+B|=|A-B]

Theorem 1.34:a) IfA LB, then||A+B|* = || A + || BIF
b)IFTALB,then AlLaB, ae€®R
Proof:a)||A+B||? = A%+ 2AB +B?
= A*+B? SinceA LB
=|| AlF + || BIF
b) A.(aB) =a(A.B)=a.0=0
.Hence A and aB are perpendicular

Example 1.3.9: Let A = (3,4).Find the angles A makes with positive X,Y axes
Solution :

dis Ababa University , CNCS

10



IAll =5
Let a be the angle the vector A rpakes with the x axis
Cosa= % —a= 37"
Definition 1.3.6: The angle between two non zero vectors a and b defined to be the angle
0 whefe 0 < 0 <, formed by the corresponding directed line
segments whose initial points are the origin .
Theorem 1.3.5: Leta = a;i +ay +azk and b = bsi + byj + bsk be two non zero vectors

and let 6 be the angle between a and b, then a.b = ||a]|||b||cos6
ab

Fafilf ol

i.,ecos 0=

Proof :

Use the law of cosines on the triangle formed by a,band b - a
Ib—al? =|bl| %+ |lal] 2 -2||al|l|b]| cos6 where 6 be the angle between a and b
b—a = (by-a)i+(b2- a)j+ (bs-as)k
Ib—alf = (by-a1)* + (bz - &) %+ (bs - ag)*
= (by 2-2a;by + a1%) + (b, % - 2a5b, + a,% ) + (b3 2 - 2ashs + as”)

b UZ = by’ + by® + bg?

lall® = a®+ a;° +ag°

b —al* =lb]|* + |[al| * -2ljalll[b]| cos6

= (by? -2a1b1+a;%) + (by? -2a2by+ a,%) + (bs” -2ashs+ as?)
= (b b+ be®) + (ar” + a,° +a5” ) -2|lal|[|b]| cosd

= -2a;b;+ -2a,b,+ -2a3bs = -2||al|||b|| cos6

= a1yt abo+ ashs = |[all||bl| cos6

= a.b =||al|||b|| cosb

Corollary 1.3.6_: Two non zero vectors a and b are perpendicular iff a.b =0
Cos90° =0
Example 1.3.10 : Find the angle between the vector a = i+ V2j + k and

a) Positive x — axis

b) Negative x-axis

Solution :

a) .Leta=i+ V2j+k andb = ai where o > 0 be the positive x-axis
llall =2, |lbl| = a
ab=a
a.b = |[al|||b]| cos® = & = 20 cosO => cosO = ¥ =6 =60°

b) .Leta =i+ V2j +k and b = ai where a < 0 be the negative x-axis
llall =2, [Ib]| = |o
11
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ab=a
a.b = ||a|||b|| cos6 = o = 2|a cosH = cosh =-Y5 =6 =120°

Example 1.3.11 : Find the angle between the vector i+ V2j + k and
a. Positive y — axis
b. Negative y-axis

Solution :

a).Leta=i+ V2j +k andb = oj where >0
llall =2, [[bl| = &
ab=a\2
a.b = |aJ|||b]] cos6 =aV2 = 2a.cos® = cosd =V2/2 = 0 = 45°

b).Leta =i+ V2j+k andb = aj where 0. <0
llall =2, [Ib]| = |o
ab=a\2
a.b = ||a||||b|| cos® = a2 = 2|0 cos® => cos® =-V2/2 = 6§ = 135°
Activity 1.3.4:
For what values of c are the vectors 3i-2j and 2i+3j + ck are perpendicular
Examplel.3.12 :
Find the equation of the circle having the points P; = (X1 ,y1) and P, = (X2,Y2)
Solution :
Let P =(X,y) be a point on the circle
OP =xi +yj , OPi=xqi + Y1J , OPy = X0 + yzj
PP, . PP =0
Thatis (X-X1,Y - Y1). (X-X2 ,Y - ¥2) =0
(X-x1) (X-X2) +(y-yi)(y - y2) =0
Particular case P1= (V2 ,V2) and P, = (-V2 ,-v2)
(X -V2)(x +\2) + (y +\2)(y -V2)=0
= -2)+(’-2)=0 = xX*+y =4

Directional Cosines

The angles o,p and y(0 < o, B, v < 180°) that a non zero vector A makes with the
positive X,Yand Z axes respectively are called the direction angles of A.

A=ai+ azj + azk
positive X —axis i=(1,0,0)
A =||Alllij|Cosa

a1= ||Al| cosaa = Cosa = %All

Similarly
positive y —axis j=(0,1,0)
A = [IAllllill Cosp
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a,= ||A|| cosp = Cosp = a%A”

Similarly
positive Z— axis k =(0,0,1)
Ak = |Alll[k]| Cosy

a
as= ||A|| cosy = Cosy= %A”

Cosa, Cos B and Cos v are called the directional cosines of A

Examplel.3.13 : Let A = 4i — 3k . Find the angle the vector a makes with the positive

X,Y Z axes .

Solution : A = 4i— 3k , [JA][=5

Cosa = % = o =37°

Cos B = %: B =90°

Cosy :_% = y=143°

Hence A makes 37°, 90°and 143° with the positive X,Y Z axes .

Example 1.3.14: Let A= (1,-4,3)
Find a) the angles the vector makes with the positive X,Y and Z axes.
b) the angles the vector makes with the negative X ,Y and Z axes.

Solution
A=1i +-4j+3Kk =ajita+tak = a=1,a,=-4 and az=3

And A= 12 +(-4)>+3° = 26

a) Positive X- axis i=(1,0,0) Jij|=1
Ai=|A|lli] Cosa = a=||Allcosa = 1= V26 cosa

Cosa=1/v26 = o = cos?(1/V26) = o =78
Similarly

positive Y —axis j=(0,1,0) ||jl|=1

Aj = l|Alljll Cosp = a=[|Allcosp = -4 = /26 cosp
cosp = -4/\/26 = B = cost(-4/V26) = B = 142°
Similarly

positive Z— axis k =(0,0,1) k|| =1

A = |AlllIKill Cosy = a,=||A]|cosy = 3= /26 cosy
cosy = 3//26 = y = cost(3/V26) = y = 54°

b) A makes 180°- 78° = 102°, 180° - 142° = 38° and 180° - 54° = 136° with the
negative X,Y Z axes.
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Activity 1.3.5
In the above example A = 4i — 3k Find the angle the vector a makes with the negative

XY Z axes .

Activity 1.3.6
Let A =2j -2k . Find the angle the vector a makes with the positive X,Y Z axes .

Activity 1.3.7
Let A =2j -2k . Find the angle the vector a makes with the positive X,Y Z axes .

Example 1.3.15: Show that Cos’a. + Cos® p + Cos® y =1
Solution :

a a
Cosa = / , CosB = /
0sa= A Al COB= Al
_a
and - Cosr=
» _(a " o a, “and Cos? % 2
Cos?o, = / ) 0S :(/ jan 0s :(/ )
« =%y = A
2 2 2 a i a 2 a 2
C +C +C — / + % j + (% )
os’o. + Cos” B + Cos” y ( ||A||) ( Al Al

_a’ +a, +a,
I Al?
=1
Therefore Cos?a. + Cos? p + Cos’ y

The Projection of one vector onto another

Let A and B be two vectors and 6 be the angle between them
P=Projg A
P=cB
(A-P)1P = (A-P).P=0
= (A-cB).cB=0
=c(AB-cB.B) =0

=AB -cBB =0 A
AB
=>C=—— P
B.B
P=cB :ﬂ
B.B
Example 1.3.16 : Let A=(1,2,3) and B = (-1,1,3)
Find
a)Projg A
b) Proj o B
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Solution

a) ProjsA
AB=1(1)+21+33=10
BB=(1).(-1) +1.1+33=11

. A.B 10
ProgA= —B = —(-113
A= BB 11 )
) B.A
b) ProjaB = —A
) ] A AA
AA=11+22+33=14
] B.A 10
ProjaB =—A = —(1,2,3
JA AA 14 123
Activity 1.3.8

Let A=(1,0,-1) and B = (2,5,3)
Find a)Projg A

b)) Proj o B
Coso=| "t %e Ay = ABg IB]
I Al BB Al
= Cos 6 :—(A'B)Z I8l
BN Al
= A.B =||A]|||B||cos 6
Moreover

|A.B| = [|AllIBll[cos 6] =|A.B| = [|All[[Bl|cos 6]
= |A.B| = ||Al|||B]llcos 6] < [|A]|||B|| since |cos 6] <1
= |AB| < [AlB]
Examplel.3.17 : Let A = (2,-1,1) and B = (3,3,2).Find the cosine of the angle 6
between A and B.
Solution : AB=23+(-1)3+13=6
A= V22 +(-1)2+1* =\4+1+1="6
Bl =V3%+3%+2° =9+9+4 =22

AB 6 N6
Cos 0 = = =Cos0= —
Al Bl /6422 V22

Activity 1.3.9: Let A =(1,0,2) and B = (-1,1,3).Find the cosine of the angle 6
between A and B.

Theorem 1.3.6 : ( Triangle inequality)
Let A and B be two vectors.Then || A+ B || < ||A]| + ||B]]

Proof : ||A+B|’=A**2AB+B? =A% B’+ 2AB
< A% B%+ 2JAB| < A% B+ |AlBl
= IAIP+ BIF+ A8
=(lIAll+ 18I *
=||A+B|F< (All+ [IB]l) 2

Addis Ababa University , CNCS
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Taking square roots on both sides
IA+BI < [IAl+ B

Resolution of a vector

If aand a* ( two non zero vectors ) are perpendicular then any non zero vector b

lying in the same plane as a and a* can be expressed as a sum of the two vectors

Proj ab and Proj ;- b which are parallel to a and a* respectively.

Proj b = ab
1= Gar

Proj stb = (a*.b/|al|?) a*

b = Proj sb + Proj -b

)a

Examplel.3.18 :Leta=2i+3j ,a" =-3i +2j andb =i +j Resolve b into vectors
parallel toaand a* .

Solution: a.at =0

ab=2+3=5 atb =-3+2=-1, | aYff =(-3)*+2°=13
lall= a;® + a,® +as=4 + 9+ 0 =13
. ab
Proj b = a
lal?
- %(Zi +3))
. ath . |
Proj a.b = a
Ve = ()
= 3 (Biv2)

. ] 5 . ~ =1 _. ; A
Proj.b +Proj, b = =i +3))+—(-3i+2) =i+
ja m 13( 1) 13( ) i

Activity 1.3.10: Leta=i+2j ,a" =-2i+j and b =3i +4j Resolve b into vectors
parallel to aand a* .

1.4 The Cross product

Definition 1.4.1 : Let A=(a;, az,az).and B = (b1, b, ,b3).be two vectors in three
dimensional space . We define
A X B = i(azbs - bzaz ) —j(aibs - asby) + k(asb, - azbs)

Example1.4.1:Let A=(1,-1,3) and B =(2,1,1) Find
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a)AxB
b)Bx A
Solution :
A=(1,-13)=(a1,a2,a3) anda;=1,a,=-1, az=3
B=(211)=(by,by,b3) andb;=2,b,=1, b3=1
a) AXxXB= i(a2b3 - b3a2 ) —j( a1b3 - a3b1) + k( albz - azbl)

=i(-1.1-1.(-1))—j(1.1-3.2) + k(1.1 - (-1)2)
=i(-1+1)-j(1-6) + k(1 +2)
=0i+ 5] + 3k

b) Bx A =i(baas - azhz ) — j(b1as - baas) + k(b1az - boay)
=i (13 —3.1)—j(13-1.1) + k2.(-1) —1.1)
= i(3-3)—j (1 6) + k(-2 - 1)
- 0i -5 -3k
=(0i +5]+3K) =- (AXB)

Using the definition of cross product one can show the following properties.

Theorem 1.4.1

AxB =-(BxA)

If A and B are parallel , then AxB =0
Ax(B+C)=AxB+AxC and(B+C)xA=BxA+CxA
Forany o €eR , (0A) X B =a(AxB)=AXx (aB)
(AxB)xC=(A.C)B-(B.C)A
Ax B is ferpendicular to both A and B.

(A x B)*= (A.A)(B.B) — (A.B) 2

NookwnpE

Using (7), || Ax B | = |AI”IBI - IAIF]B| Cos®
= JIAIZIBI? (1 - Cos’®)
= |AIPIBIF sin6
= [|A+B = IAIAB|* sin’®
Taking square root on both sides
A +BI =[AllBsin® |
Since 0<6 <180, [sin6 | = sin6 . Hence
|A+BI =I[AlllB]sin6
Remark : (A+B)xC=A x(BxC)
LetA=i,B=iandC =]
(AxB)xC =0i+0j+okand A x(BxC)=0i—j+0k
Examplel.4.2 : It follows from (1) that
ixizjxj=kxk=0; ixj=k, j xk =i, Kxi=j
Example 1.4.2: Let u and v be vectors in R*, we have
(uxv).v=u.(vxv)=u.0=0,
(uxv).u=-(vxu).u=-v.(uxu)=-v.0=0.

Addis Ababa University , CNCS
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It follows that if u xv =0, then u xv is orthogonal to both u and v and to the plane
determined by them.

Note: If two vectors are parallel then their cross product is zero because two parallel
vectors form an angle of either 0 or 180. So sin(0) = sin(180) = 0.

1.5 Lines and planes

Lines in spaces

Since we often think of vectors as directed line segments , lines and vectors are very

much
related. We will use vectors to describe lines.A line | and a vector L are parallel if L is parallel

to the vector ﬁ joining any two distinct points P, and P on | . Two points determine a
unique line. From Euclidean Geometry that a line | in space is uniquely determined by a point Q
on | and a vector L parallel to the line. From the above, a point P is on | if and only if @ IS
parallel to L,

this means @ =tL where t €R

v
_<

X

If ro=xoityojtzok and r=xi+yi+zk,then PQ= r- rp thatistL=r—rg

r=ro+tL
which is called the vector equation of I. Since ry can be any vector that joins the origin to a
point on I, and Since L can be any vector parallel to I, there are many different vectors
equations of a given line I.
Suppose we let L =ai + bj + ck

r = ro+ tL can be written as
Xi+yj+zk = ( Xol+Yyoj+zok) + t(ai+bj+ck)
= (Xotat)i + (yotbt)j + (zotct)k
Or equivalently
X= Xotat, y=Yotbt, z=zp+ct
Which is called parametric equations of | and t is a parameter

Examplel.5.1: Find a vector equation of the line that contains (1,1,3) and is parallel toi + j —
2k
18
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Solution: -
L= i+j-2k=1i+1j-2k
ro= li+lj+3k=i+j+3k
equation of the line lis r= rp+tL
= (i+)+3k)+t(i+j-2k)
= (1+t)i + (1+t)] + (3-2t)k
Activity1.5.1 : Find a vector equation of the line that contains (2,0,1) and is parallel to 2i — k

Example 1.5.2: - Find the parametric equations of the line that contains (1. 1, 3) and parallel to
i+ j+k

Solution:
Take (Xo, Yo ,Zo): (1, 1,3)
And L = ai+bj+ck = i+ j+k

Hence the parametric equations of the line is X =Xp+tat = 1+1t
y=VYotht =1+t
Z=Zptct =3+t

Let x =Xxptat ,y=Yyotht andz=zytct be a parametric equation of a line. Suppose all a, b, ¢
are non - zero. If you solve each of these three equations for t, you will get

X—X - -1
0o =Y Yo gpge=2"%
a b C
X=X _ Y=Y _2-12
a b c
If a=0andb and c are non zero
X=Xo, Y=Yotbt , z=1ztct
:y_yo t: Z_ZO
b C

- -1 . ) . .
X=X, = y by° = % is the symmetric equations of line I.
c
Activity:1.5.2 - Find the symmetric equations of the line x=xo+at , y= yptbt , z = zp+ct

where

t=

is called the symmetric equations of line I.

t

[2})

vv:v

0
0
c=

O O T

0

O

Examplel.5.3 Find symmetric equations of the line | that contains the two points P= (1, 1,2)
and Q=(2, 0,-1).

Solution :- First we find a vector L parallel to | .Since P and Q are two distinct points lying on

l,

the vector @will serveas L .
L= P_d =2-Di+(0-2)j+(-1-2k=i+—-)-3k
Take a point on |. Let ustake P = (1, 1,2)
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P:(l, 1,2) :(XoyO,ZO):>X0=1y0:1, 20:2
L=i-j—-3k=ai+bj+ck =>a=1, b=-1,c=-3
Symmetric equations of | are
X=X _ Y=Y _2-1%

a b c
Which becomes
x-1 y-1 z-2
1 -1 -3
Activity1.5.3 : On Example 1.5.3 above ,take a pointon | as Q= (-2,1,-3).
Find its symmetric equation.

Many long and difficult computations can be simplified with the help of vector methods.
Next we will compute the distance between a given line and a given point not on the line.

Theorem 1.5.1 : Let | be a line parallel to a vector L , and let Q be a point not on |. Then
the distance D between Q and | is given by

5 - ILXPQ]
I

Proof: Let @ be the angle between L and @ so that 0 <@ <180° because angle
between two vectors is between 0 and 180°-

where P is any point on |

D=||PQ | sin@
I LxPQIl | LI PQ]| Sin®
= |L|ID
It follows that D = %

Examplel.5.4: - Find the distance D from the point (3, -1, 1) to the line | with parametric
equations x =—-1+2t,y=2+3t,z=—-t
Solution

First we will show that (3,-1,1) ¢ |.

X=-1+2t

3=—l+2t=>t=2
Ifyouput t =2iny=2+ 3t ,weget y=8 whichis different from -1.
Hence(3,-1,1) # |
Putt=0. x=-1+20)=-1, y=2+3(0)=2and z=-0=0
(-1,2,0)isonl .
Take Q =(3,-1,1) ,P =(-1,2,0)
PQ=(3-(-1),-1-2,1-0)=(4,-3,1)
PQ =4i+-3j+k
L=2i+3j+k
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i ] Kk

Lx PQ= 2 3 -1 =i(3-3)-j(2-(-4) + k(6-12) = =-6i + 18k
4 -3 1

1L = [ 2i + 3+ K|l = 22 +37 + (<)% = 14

ILx PQl = [1-6i + -18K]| = y/(-6)° + (~18)* = /360

o= ILXPQIl _ /360

Ll J14
Activity1.5.4 : Find the distance D from the point (1, 1, 0) to the line | with
parametric equations x=-2+2t,y=2—-t,z=1-t

Planes in space

There is only one plane that contains a given point and perpendicular to a given
line. Similarly, there is only one plane that contains a given point and perpendicular to a
given non-zero vector. In other words, a plane is determined by a point and a non-zero
vector. Let Q= (Xo, Yo,Z0) be a given pointand N = ai + bj + ck be a non zero vector.
Then a point P = (x,y,z) lies on the plane & that contains Q and is perpendicular to N if and
only if the vector

QT’ = (X—=Xo)i + (y—Yo)] +(z— 20 )k is perpendicular to N.

This means N. aD =0 which means [ai + bj + ck][( X —Xg)i + (Y — Yo)] +(z— 20 )k] =0
Which implies a( X — Xo) +b (y —yo) +c(z—-20) =0.
The vector N is said to be normal to ©

Examplel.5.5: - Find the equation of the plane that contains the point (1,-1,3) and
perpendicular to the vector 2i —j + 5k.
Solution: - The normal vector N=ai + bj + ck = 2i —j + 5k
a=2,b=-1,andc=5
(X0, Yo0,20) = (1,-1,3) > Xo=1,yo=-1and zo = 3
We obtain the equation ; 2(x — 1) +-1(y —(-1)) +5(z-3) =0
collecting terms 2x -y +5z =18

Activity 1.5.5: Find the equation of the plane that contains the point (2, 1,1) and
perpendicular to the vector 4i +2j .

Examplel.5.6: - Find an equation of the plane containing the points P=(1,-1,3) ,Q=(-

1,4,1)and

R=(2,4,-2)
Solution: - The vectors @:-Zi +5j +-2k and PR =i +5] + -5k are not parallel.
To find the normal vector take N= P_(j x PR
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ik
N= |2 5 —2| =i(-25+ 10) —j(10 + 2) +k(-10 — 5)
1 5 -5
= -15i + -12j + -15K

N=-15i + -12j + -15k is normal to the plane and P =(1,-1,3) lies on the plane. The
equation of the plane is
-15(x-1) +-12(y-(-1)) +-15(z-3) =0
or more simply
-15x + -12y + -15z2 = - 48

Activity 1.5.6 : - Find an equation of the plane containing the points P =(2,1,1) ,
Q=(1,0,3)and R=(1,2,1)

Vector methods greatly simplified the calculation of distances between points and planes.

First we find distance from a point to a plane. Using this concept we also find distance

from a line to a plane and distance between two parallel planes.

Theorem 1.5.2 : - Let © be a plane with normal N, and let Q be any point not on = . Then

the distance D between Q and « is given by
o= INQP]
[Nl

where P is any pointon = .
Proof: Let # be the angle between N and QP , so that 0 < #<180°.
Case (1) 0< 9<90°
D =||QP| cosd
Case (2) 90°< #<180°
D = [|QP|| cos(180°- 6) = ||QP|| (-cos )
Since distance is non negative, we can write the above two cases as
D =|QP|||cosd|
From dot product,
N. QP =[IN[|QP| (cos &)
IN. QP | = [IN[l|QP || |cos 0|
= [INJID
Hence,
|N.QP]|
[Nl

Example 1.5.7: Find the distance D between the point Q=(2,-1,3) and the plane
n:2X-y+z=3
Solution: - Q does not belongto = .
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Take P =(1,1,2) Pe mbecause 2(1)-1+2=3
The normal vector is N=2i —j + k
QP = (1-2)i+ (1-1)j +(2-(-3))k = -i + 5k
N. QP=(2i —j+K)(-i+5k)=-1+5=4
IN. QP | =4
IN[| = /2% +(-1)° +1* = /6
_INQP| _ 4 4 6 _ 46 _26

Hence, D="—"F 1= — = — X — = —_—

INI V6 V6 6 6 3

Example 1.5.8 Find the distance D between the point Q= (1,2,1) and the plane
m.:X+2y +3z=4
Solution: - Q does not belongto = .
Take P =(0,2,0) Pe mbecause 0+ 2(2)+3(0) =4
The normal vector is N=1i + 2j + 3k
QP = (0 -1)i+ (2-2)j +(0- 1)k = -1i + -1k

N. QP = (Li + 2j + 3K)(-1i + -1k) =-1 -3=-4

IN. QP | =4

INJ| = V1% +2% +32 = |14
INQP| _ 4 _ 214

INT - V14 7

Examplel.5.9 : - Find the distance from the line| : x=1+3t,y=-2+1t,z =2t and the
planet:-2x +4y+z=3

Solution: - Since the line and the plane are parallel, take any point Q on I. Then the

distance

Hence, D=

from | to = is equal to the distance from Q to « .
Putt=0,thenx=1,y=-2,z=0

Q = (11'210)

P=(0,0,3) € = because (0,0,3) satisfies the equation -2x + 4y + z=3
N = -2i+4j+k

|N.QP]

AN

QP =-i+2j+3k

N. QP = (-2i+4j+k)(-i +2j +3k)=2=8+3 =13
IN. QP | =13

INJ| = /(-2)2 +4% +12 = 21

D=
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D:|N.&5|: 13 13J21

INI V21 21

Activity 1.5.7:- Find the distance fromthe line | :x=1+t,y=2-1t,z=1+2t
andtheplane m:x -y+2z=1

Examplel.5.10 : - Find the distance D between the parallel planes
m=X-Yy+2z and m, =-2X +2y -4z =6
Solution: - Take any point in one of the planes. The distance between the two planes is the
same as the distance from one point in one plane to the other plane.

Take Q=(-1,01) e m (-1,0,1) ¢ 7
and mp = -2x +2y -4z =6
hence N = -2i +2j -4k
Take P=(0,3,0) en;
QP =i +3j-k
N. QP = (-2i+2j -4K)(i—3j—K) = -2 -6+ 4= -4
IN. QP |=}-4|= 4
INIl = /(=2)% +2% +(—4)? = J4+4+16 =+/24

_INQP| _ 4 2 _ 6

D= = el
INII 24 6 3
o= INQP| _ 5 _ _5/6

1.6 Applications on area and volume

Area of a parallelogram

|| A xB || is the area of the parallelogram formed by the vectors A and B

Example 1.6.1 : Let P =(2,-1,3), Q = (5,8,2) and R = (0,-1,3).Find the area of APQR

Solution:
PQ =(3,9-1) PR =(-2,0,0)
i j ok
IPOXPR[=]3 9 —1=i9.0-0.(-1)) (3.0 (-1)(-2))+ (3.0 (-2)9) k
20 0
= 0i +2j + 18k

Area of the triangle = V0% + 2% +18° =+/328 square units

Example 1.6.2 : Find the area of a triangle with adjacent vectors P= (2, 3, -1) and
Q=(1,22)
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Solution:
k

]
PxQ=2 3 —1=(23)+2(1))i - 2Q)+1(1))j + (2(2)-1(3))k = 8i -5j +k
12 2

Area of a triangle = %” PxQ = %\/64+25+ =%\/%

Volume of a parallelpiped

The volume of the parallelpiped formed by the vectors A, B and C is |A.(B x C))|
|| B x C || = Area of the base of the paallelpiped
0 is the angle between A and B x C

Example 1.6.3: Find the volume of the parallelpiped formed by the vectors A = 3i+j-k

B =-i+2j + 4k and C = 2i-5] +3k

Solution
First letus find Bx C
i j k
BxC =|-1 2 4{=i23-4.(-5)-((-1).3-4.2)+ ((-1)(-5) - 2.2) k
2 -5 3

=26j +11j +1k
A.(Bx C)=3.26+1.11+(-1)1 = 88

Volume = |A.(B x C)|=|88| cubic units = 88 cubic units

VECTOR SPACES

Introduction:

One of the fundamental concepts of linear algebra is the concept of Vector space
(or linear space. At the same time it is one of the more often used concepts algebraic
structure in modern mathematics. For example, many function sets studied in
mathematical analysis are with respect to their algebraic properties vector spaces. In
analysis the notion "linear space” is used instead of the notion ""vector space”.

Moreover in many applications in mathematics, the sciences and engineering, the
notion of a vector space arises. This idea is merely a carefully constructed generalization
of R". The basic nmodels for vector spaces of n dimensional vectors. In studying the
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properties and structure of a vector space, you can study not only R", in particular, but
many other important vector spaces. In this module we define the notion of a vector space
in general and in later sections you study their structure.

If one considers geometrical vectors, and the operations one can perform upon
these vectors such as addition of vectors, scalar multiplication, with some natural
constraints such as closure of these operations, associativity of these and combinations of
these operations, and so on, we arrive at a description of a mathematical structure which
we call a vector space.

The "vectors" need not be geometric vectors in the normal sense, but can be any
mathematical object that satisfies the following vector space axioms. Polynomials of
degree <n with real-valued coefficients form a vector space, for example. It is this
abstract quality that makes it useful in many areas of modern mathematics.

Objectives: At the end of this unit, you will be able to:

Define what do we mean by a vector space and subspace

Find the sum of two vector subspaces of a vector space.

Find the generating set of a given vector space

Differentiate linearly dependent and linearly independent vectors
Find basis and dimension of a vector space

Find the sum and direct sum of vector spaces

The axioms of vector spaces.

Mathematics is used to solve problems .One of the key ingredients in the problem solving
process is the abstraction of the original problem in to mathematical smbols and
ideas.The theory we are about to develop , that of vector spaces , is an abstraction .It is an
abstraction from many mathematical models.

Vector spaces: Definition and Examples

Consider the following four mathematical objects

The XY plane

The set of all 2x2 matrices

The set of polynomials

The set of all solutions to a given system of homogeneous equations

These four have similarities that may not be immediately obvious( and all turn out to be
vector spaces as we will soon see)
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a. Eachis a set of objects
b. Each has the property that any two objects in the set can be added and the result is
an object in the same set
c. Each has the property that any object in the set can be multiplied by a number ,
and the result is an object in a set.
The three properties just mentioned form the nucleus of the definition of vector space.To
complete the definition of vector space arount the above nucleus , we need to list the
mathematical laws that must hold in every vector space. A precise definition of vector
space will now be given.

Definition of VVector Space

We shall define vector spaces by using vector addition and scalar multiplication, that are
subject to some conditions. We will try to define vector spaces based on the above
operation. Based on that we check whether or not a given vector space is a vector space
or not.
Definition 4.1.1: A vector Space V over a field F is a set of objects which satisfies the
following properties

1.GivenuveV,u+veV

2aoeFandveV ,.aveV

3.Vu,v e V,u+v=v+u

4.uvw eV , (U+tv)+w=u+ (v+w)

50+u=u+0 0eV ,VvVveV

6.VvueV F-ueV,u+-u=0

7MfaeF,.a(utv)=.au+.av

8Ifa,peF,(a+PBlu=au+pu YueV

9.1fa,peF,(apfu=a(pu) YueV

10.VueV,lu=ul=u
Remark : Elements of a vector space are called vectors

Example 4.1.1
Let V = R? over R.
(a,b) +(c,d) = (a+c, b+d)
a (a,b) = (a, ab) .using the definition show that V is not a vector space over ‘R.
Solution
1.Closed under addition
(a,b) +(c,d) = (a+c, b+d) € V
2.Closed under scalar multiplication
a(a,b) =(a, ab) e V
3.Commutativity
(a,b) +(c,d) = (a+c, b+d) = (c + a,d + b)=(c,d)+(a,b)
4.Associativity
[(a,b)+(c,d)] + [(e,P] =(a+c, b+d) + (e,f)
= ([at+c] + e [ b+d] +)
= (at ct e ,b+d+f)
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= (a+ [cte], b +[d+f])
= (a,b) + [(c,d) + (e,N)]
5.Existence of identity
(a,b) +(0,0) = (a+0,b+0) = (a,b)
(0,0) + (a,b) = (0+a,0+b) = (a,b)
(0,0) is the identity element
6.Existence of inverse
(a,b) + (-a,-b) =(a + -a ,b + -b) = (0,0)
(-a,-b) + (a,b) = (-a +a, -b + b) = (0,0)
7.distributive law for addition in V
Let vi= (a,b) and v,= (c,d)
a[vitve] = af(a,b) + (c,d) ] =a(a+c, b+d)
= (atc,a[b+d])
=(at+c, ab + ad)
=(a,ab)+(c,ad)
= a(a,b) + a(c,d)
= oVvit avo
8.distributive law for addition in F
(ot B)(a, b) = (a (at+ P)b) = (& ob+ Bb)
o(ab) + p(a, b) =(a ob) +(a, pb) = (2a, (ot B)b)
Takea=1,b=0anda=1=
(ot B)(@ b) = (1 +1)(1,0) =2(1,0) = (1,0)
a(a,b) + B(a, b) =1(1,0) +1(1,0) =(1,0) + (1,0) = (2,0)%(1,0)
Hence (a+ B)(a, b) )= a(a,b) + B(a, b)
9.Associative law for multiplication
(oB)(a,b) = (& (ap)b) = (a, a(Bb)) =ala, pb) = a[B(a,b)]
10. Multiplication by 1€ F
1v =1(a,b) = (a,1b) = (a,b)
Since property 9 is failed , V is not a vector space over R.

Example 4.1.2

LV=R"={(X1, X2, X3, .00, Xn ) - XieRi=123 ....... ,n}

F = R with the usual addition and scalar multiplication is a vector space.lt is the most
important example.

Remark : Vectors in R? can be visualized as points in the XY plane ; similarly ,
vectors in R* can be visualized as points in the XYZ space.We can also picture
vectors in R% and R* by arrows.

2.V=Q"={(X1, X2, X3, ..., Xn ) : X€Q,i=1,23 ....... ,n}

F = R with the usual addition and scalar multiplication is not a vector space because
take a= V2 and u = (1/3,1/3 ,1/3)

au =V2(1/3,1/3 1/3) = (N2/3 ,N2/3 N2/3) ¢ Q®
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3.V={(X1,X2,X3, e...., X1, 0) 1 XjeR ,1=1,23 ....... ,n -1} F =R with the usual
addition and scalar multiplication is a vector space

4.V ={ apx"+an X" +anx"+. . .+ agxt+ap: aeR} F =R with the usual
addition and scalar multiplication is a vector space.

5 LetV={(x,y,2) : x,y,zeR and 2x =y =3z } forms a vector space , where the
operations + and . are as usual in R®.

Note that 2x =y = 3z is the equation of the line passing through the origin and
containing the point (3,6,2). Infact the set of all points on any line passing through the
origin inR® forms a vector space.

6. V = The set of all solutions to the homogeneous system

X+y+3z=0

X-y—-2=0

={(xy,2) : x,y,zeR such that x + y + 3z = 0 and
X-y-z=0}

The solutions here are all triples of the form (-a,-2a,a) and

thus the set of vectors is {(-a,-2a,a) : ac‘R}

Addition and scalar multiplication is defined as in %% is a vector space which is
contained within a larger vector space R*

Activity 4.1.1: In each of the following , Using the definition of a vector space find
precisely which axioms in the definition of a vector space are violated. Take V = R?
over the field F = R.

L.(X1, X2) +(y1, ¥2) = (X1 +y1, 0) , ou(X1, X2)=( o1, 0)

2..(X1, X2) +(Y1, Y2) = (X1 +y1 X2 +Y2), o.(X1, X2)=( aXz , 0)

3..(X1 , Xz) +(y1 , y2) = (X1 +y1 X2 + yz), O(.(Xl, X2 ):(OLXLZOLXQ)

4.(X1, X2) (Y1, Y2) = (X1 +Y1 Xz + Y2), o (X1, X2 )=(0+Xq,0+X7)

Definition 4.1.2: If u, v are vectors (elements of a vector space )
U—-v=u+-v

Theorem 4.1.2: Let V be a vector space over a field Fand .o € Fandv € V
1. Ov=0and a.0=0

2. av=0ifandonlyifa=00rv=0

3. (-lv)=-v

4. (-av) =-(av) = a(-v)

5. The identity element O is unique.

6. the inverse for every element v is unique.

Proof :

1. Ov+0Ov=(0+0)v=0v=-0v)+0v+0v=(0v)+0v+0
=0v=0

00+00=a(0+0)=00=-(a0) + a0 + 00 =-(a0 )+ a0 + 0
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=a0=0
2. Suppose av =0
(=) Wehavetoshow aa=00rv=0
Suppose o # 0 av = 0 =a *(av) = o 0
=(a a)v) =0
= 1lv=0
=Vv=0
(<) Suppose v = 0. We have to show o =0
Suppose a # 0 by the above v = 0 which is a contradiction . Hence oo = 0
Suppose aa=0 orv=20
By the aboveov=0and o 0 =0
3.0=0v=(1+-1)v=1v+-lv=V+(-l)vand v+-v=0
V+(-)v=v+-v=0 = Vv+-v+(-))v=v+-v+-v
0+(-1)v=0+-v=>(-)v=-v
4.0=0v=(a+-a)v=ov+ (-a)v = a(-v) =-(av)
Similarly0 = a0 =a(v+-v)=av + a(-v)
=a(-v) =-(av) = (-a)v
Therefore , a(-v) = -(av) = (-a)v
5. LetueVandVv €V v+u=v.Wehavetoshow u=0
In particular choose v = 0
O+u=0and0+u=u=u=0
6. Letv € V and suppose u € V such that v + u =0 .We have to show u=-v
V+-v=0 =>v+-v=0=v+u
=>-v+(V+-v)=-v+(v+u)
=0+-v=0+u
=-v=u
Activity 4.1.2
Consider the vector space V = R* over R with vector space operations defined as vector
addition: x+y=xyforall x,y eV
Scalar multiplication : ax =x* for all xeV and aeR.
a) Find a suchthat 1 =ab5 |,
b) Find o and 3 such that a3 + 37 =63
c) The identity element.

Subspaces

One way of getting new vector spaces from a given vector space V is to look
a subsets of V which forms vector spaces by themselves. A related notion to a vector
space is that of a vector subspace. Suppose that V is a vector space and let W — V be a
subset. Not every subset W will itself be a vector space. Since V is a vector space, we
know that we can add vectors in W and multiply them by scalars, but will only make
W into a vector space in its own right if the results of these operations are back in W .
Formally, we have

Definition 4.2.1: Let V be a vector Space overafield F and W c V.
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If W satisfies
Sl.v,weW,v+weW
S2.aeFandve W, .ave W
S3. The element 0 of v is also an element of W
Then we say W is a subspace of V

Remark: Every vector space has at least two subspaces, itself and the subspace {0}
consisting only of the zero vector [Note that 0 +0 =0 and ¢.0 = 0 in any vector

space. The subspace {0} is called the zero subspace.

{0} and V are subspaces of V called the trivial subspaces of V.
Example 4.2.1 : Show that W = {(x,y) : X + 2y = 0 } is a subspace of R* over R

Solution :
1. Letu,ve W, wehavetoshowu+v e W
U= (X1,Yy1) suchthat x;+2y; =0
vV =(X2,Y2) suchthat x; +2y,=0
Utv=(X,y1)+ (X2, ¥2) =(Xa + X2, Y1 +Y2)
X1+2y1+ X2+2y2:0:>X1+ Xy + 2y1 +2y2:O
=Xt X)+2(i+y2)=0
=S>X1+tX2,y1t+Y2) e W
=>u+v e W
2. LletaeRandv e W WTS av e W
v=(Xy)eW=x+2y=0
aV=o(xy) = (ax, ay)
X+2y=0=a(Xx+2y)=0 VeR
= ox+2ay =0
= oax+2(ay) =0
= (ax,ay) =aveW
3.0=(0,0)
0+2(0)=0= (0,00 e W
Hence W is a subspace of V

Example 4.2.2 Let VV = R over R. .
W ={(a,b,c) :a>0}
Show that W is not a subspace of V.

Solution :
Letw=(1,-21) e Wand oo =-1
ow =-1(1,2,-1) = (-1,-2,1) g W
Hence W is not a subspace of V.

Example 4.2.3
U = The set of all solutions to the homogeneous system

X+y+3z=0
X-y—-z=0
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={(xy,2): xy,zeRsuchthatx+y+3z=0and x-y-z=0}
={ (-a,-2a,a): acR}
U is a subspace of V.

Example 4.2.4
U =The set {(a,0) : acR} is a subspace of R? .Geometrically , this is the X-axis in
the XY- plane.

Example 4.2.5
Let W ={(X1, X2, X3, X4, X5): X1, X2,X3,X4,X5, € R and X3 + X4 >0}
Is W a subspace of R>?
Solution
Letu,v e W. U= (X1, X2, X3, X4, X5): X3+ X4 >0
V =(Y1,Y2,Y3 Ya Ys) 1 Y3+ Ys20
U+V=(X1+Y1,X2 + Vo, X3+Y3,Xat Ya,X5+Ys5):X3 + X4 > 0 and
Y3 +ys20
sincexg+X4>0 and y3+y;s>0,X3+X4 +Yy3+ys>0
utveW
let e and ue W.
ou = (0Xg, 0X2, 0X3, OXs, 0X5) Where X3 + X4 >0
o X3 o Xg :(X(X3+X4)<0ifOL<0
Hence W is not a subspace of %°.

Activity 4.2.1:
Let W ={(X1,X2,X3): X1,X2,X3€R and at least one x; =0 }
Show that W a subspace of R3?

Example 4.2.6:
Let W ={(X1,X2,X3 X4, X5): X1, X2,X3,X4,X5, €R and Xo+ 2xs= 0 }
Is W a subspace of R3?

Solution :
Letu,veW.
a. U= (X1,X2,X3):X1,X2,X3€ R and Xp+ 2Xs= 0
V = (Y1,Y2,Y3,Y4,Y5):Y1,Y2,Y3,Ys Ys€ R and yo+ 2ys= 0
U+ V= (Xe+y1,Xa + Y2, Xa+Y3,Xat Ya,Xs5+Ys): Xo+ 2Xs= 0 and
Yo+ 2ys=0
X2+ Y2 + 2(Xs+Ys5)= Xot 2Xs5 + Yo+ 2y5= 0+0=0
utveW
b. Let aeR andue W.
ou = au(X1,X2,X3,X4,X5):X1,X2,X3,X4,X5€ R and Xo+ 2Xs= 0
= (0X1, OX2, OLX3, OLX4, 0X5) X1,X2,X3,X4,X5€R and X+ 2X5= 0
aXzt 20X5 = aXot+ 2X5) =00 =0
= oaue W
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c.0=(0,0,0,0,0) € W because 0 +2(0) =0
Therefore W a subspace of R°.

Example4.2.7Let V={f:R> R}
W={f:R>R fX) =f(-x) VeR }

Solution
a. Let f;,f, € W. We have to show fi+ f, e W
fieW = fl(X) :fl(-X) VXeR
f,eW= fz(X) :fz(-X) vXeR
(fut F2)(X) = fa(x) + fa(x) = f1(-X) + fo(-X) =(f1+f2)(-X) VXeR
Hence fi+ f, e W
b. Letfie Wand ae F
af; (X) =afi(-X)=af(x) =afi(-x)
c. The zero function is an element of W.
Hence W is a subspace of V.

Activity 4.2.2

Let W ={(X1, X2, X3, X4, X5) : X1, X2, X3, X4, X5, €eRand x;, =1}
={(1, X2, X3, X4, X5) : X2, X3, X4, X5, €R }

Is W a subspace of R>?

Example 4.2.8 :
U =The set {(a,b,b) : a,beR} is a subspace of R* .
Note that to belong to U, an ordered triple must have its second and third entries equal.

Example 4.2.9:

a o0
Show that U = {[O bj a,be R} is a subspace of Mayx, where My is the set of all

2X2 matrices.

Solution

1. Letu,veU.u= a0 andv = ¢ 0 where a,b,c,deR
0 b 0 d

a o0 c O a+c 0
u+v= + = e U
[O bj (O dJ ( 0 b+dJ

2. Letue Uand aeR.Thenu = [g SJ abeR
a o0 ca 0O
ou =a = eU
0 b 0 ab
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0 0
3. e U
o o

Example 4.2.10:Show that W = {(x,1,0) : X R } is not a subspace of R> over R
Solution :

Since W is not closed under addition : (x,1,0) +(y,1,0) = (x+y,2,0) which does not have the
required 1 as a second entry.This set also is not closed under scalar multiplication.

Theorem 4.2.1: The set of solutions of a homogeneous system of linear equations with n
unknowns is a subspace of R" .
Proof :

Let U be the set of solutions is not empty since at least it contains the zero vector (0,0,.....,0)
Suppose u= (ug, Uz, ....uy) and v =(vy, Vo, ....,vq) be two vectors in U. That is they are
solutions to the system.We must show that their sum
(uitvy, U+ vy, ..., uy +Vvy) is also a solution.To this end
Suppose that
a1Xp+aXy +.....tapXp=0
is any one of the equations .Substituting u +v in the x’s in the left side , we obtain
a(uptvy) +a (U + vo)+.....+ap(Un + Vy)
= (a 1ugtagus +.....Fapup) + (@ 1vitagVot.....+apVy)
=0+0 since u=(ug, Uz, ....up) and v =(v1, vz, ....,vp) are solutions to the system.
= 0, as desired
It remains to show that U is closed under scalar multiplication.
Let u =(uy, Uz, ....up) be a solution to the system and let o be a scalar. Substituting
ou =(aug, auz, ....,auy) into
a1X1+aXy ... tapX,= az(owp) + a z(owp) +.....+ap(ay)
=afaius + a Uy +.....+apUn]
=a..0 =0
Therefore aueU
Corollary 4.2.2: Lines and planes through the origin in%R%and R* are subspaces.
Proof:
Lines and planes through the origin are sests of solutions of homogeneous system. .By the
preceeding theorem they must be suspaces.
Activity 4.2.3
Determine whether the sets are subspaces of R°.
1.{(2a,-5a,b): a,beR }
2{a(2,0,1):aeR}
3.{(2,0,1)+a(4,1,3):acR }

Activity 4.2.4
Determine whether the sets are subspaces of My,

A U= {[O OJR}
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b. U= a o0 a,beR
b a+b

Activity 4.2.5
Let V be a vector space and let u; and u, be two particular vectors in V.

LetU={au+fu:a,p eR}
1.Prove that U is a subspace of V.
2. suppose that V =R>. u; =(1,0,1) and u, =(1,1,0) .Describe U geometrically.
3.Suppose that VV =R*. u; =(1,0,1) and u, =(3,0,3) .Describe U geometrically.

Activity 4.2.6
Determne whether or not the point (7,1,3) is in the subspace {(3a-2b,b+a,b+a) , a,beR } of

R,

Remark :

1. In the definition of Subspace S1 says that W is closed under vector addition, whereas S2
says that W is closed under scalar multiplication.. Foruand v in W, u +v belongs to V
because V is a vector space. The question is whether u + v belongs to W, and S1 says that
it does. Similarly, if we W is a vector in W and a.e F is any scalar, then aw belongs to V
because V is a vector space. The question is whether aw also belongs to W, and S2 says
that it does.

2.You may ask whether we should not also require that the zero vector 0 also belongs to W .
In fact this is guaranteed by A2, because for any we W ,0w = 0 (why?) which belongs to W
by A2 Similarly, if W < V is a subspace, then if we W, -we W.

Theorem 4.2.3 : Let W = be s subset of a vector space V. the following
Statements are equivalent.
1. W isasubspace of V
2. W is closed under Vector addition and scalar multiplication.
3. fuveWand a,p e F,thenau+pv e W
Proof : 1 = 2 obviously true
2 = 3 Suppose W is closed under Vector addition and scalar multiplication.
We have to show ifuv e Wand o, € F,thenou + v € W
Suppose uve Wand a,p e€F, thenoau e W and Bv e W
ou € W, Bv € W are two vectors hence au + v € W because W is closed
under vector addition.
3=1 ForuveWand a,B eF,thenau+pv e W
We have to show W is a subspace of V,
LetuuveWand,1leF
lueW ,lveW ao=1,p=1
ou+ Bv=1lu+lv=u+veW
Letue Wandoae F WTSoau € W
ou=au+0veW = oaueW
0=0u+0v=au+pveW
= W is a subspace of V
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Example 4.2.11
In each of the following , find out whether the subsets given form subspaces of a vector
space V.
1.V=R,S={(xy,2) : 2x +y+z=1}
2.V=%R*,S={(xy):x>0andy> 0}
Solution :
1.0=(0,0,0 )¢ W .Hence S is not a subspace of R*.
2.(1,1) e Sbut-1(1,1) =(-1,-1) ¢ S..

Activity 4.2.7
Show that W = {(x,y) : X + 2y = 1 } is not a subspace of R? over R.

Theorem 4.2.4: Let V be a vector space a field F.Let W 1and W ;, be subspaces of V
. Then W1 nW  is a subspace of V.

Proof :

lletuuveW; "nW;= u,veW;and u,ve W,

Since W is a subspace of V, u+v € W similarly, since W , is a subspace of V, u
+veW,

Thisimpliesu+v e Wi W,

2.letve W; "W, =>veW;and ve W,

Since W is a subspace of V, av € W similarly, since W is a subspace of V ,
av e W

=>ave Wi "W,

3.0e W, andOeWz = 0eW; "W,

Hence W1 W is sub space of V.

Example 4.2.12: Let W ;= {(x,y) : x+2y =0} and

W= {(x,y) : 2x-y =0 }.Show that W1 UW , is not a subspace of V=%R?
Solution:

To show that W1 W, is not a subspace of V=R? , we will show that one of the
conditions of a subspace will be failed.

u=(-2,1)e W; andv =(1,2) € W, thereforeu ,v e W; UW, Butu+v=(-2,1) +
(1,2) = (-1,3) is not an element of W, UW ,

because (-1,3) is neither an element of W 1 nor W ,

Example 4.2.13: Let V = R® over R
U ={(x,y,z) : x—2z = 0}.Show that U isa subspace of V.
Solution
a. Letu;and upe U =x1 -2z =0and x, — 2z, =0
= X1+X2)—2(z1+22)=0
=>uUu+ueU
b. au = a(X,y,z) = (ax, ay, az) €U
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oX-20z=o(x—-2z)=a(0)=0 €U
c.0=(0,00) 0-2.0=0
Hence U is a subspace of V

Activity 4.2.8: LetV = R3over R
W={(xy,2):x=y, zeR}
Show that W is a subspace of V.

Example 4.2.14: Let V = R*over R
U={(xy,z) : x-2z=0}
W={(xy,z):x=y,ze R}

a. FindU nW

b.Show that U U W is not a subspace of V.

Solution

a.Letue UNW = u=(x,y,z) such that x — 2z =0 and
X=y

UnW={(x,y,z) : x =y =2z } which is a subspace of V.

b.UuW

Let u=(24,1)eU and v=(3,39) ¢ W
u+v=(5710) ¢U or (5710)¢ W
= utve UUW
Hence U u W is not a subspace of V.

Activity 4.2.9 :Let V= R over Rand U=[(1,1)] W =[(1,2)]
Show that U U W is not a subspace of %2 .

Remark : Let W ;and W ; be subspaces of V. Then W; UW  isnot a subspace of V.
Definition 4.2.2: Let V be a vector space a field F. Let W ;and W , be subspaces of V .
Then W + W, is defined as

Wi+ W, :{U1+U2 ue Wi and u, e W, }

Example 4.2.14:
Show that W, + W is a subspace of V.
Solution
a.letuveW; +W,,=u=u+U, uie Wiand u,e W,
v=vi+Vv, vie Wy and v, e W)
u+v=(ur+uz)+(vi+tve)=(Ur+vy)+(ux+vy)e Wi + W,
b.LetueW;+ W, =u=u;+U, uie Wy and u,e W,
O(U:OL(U1+U2 ): au; +ou, e W1 + W,
c.0=0+0eW; +W,
hence W1 + W is a sub space of V.

Definition 4.2.3: Let V be a vector space over a field F and let vy, v, ... v, be elements
of
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V .Letag,on ,... 00 €F.
Vit apVe + ... +anVv, IS called a linear combination of vy, vo ..., vy

Example 4.2.15: The set of linear combinations of vy, v, ... v, is a subspace of V.
Solution :

Let W:{OL]_V1+ Vo + ... topVn o0 ,. ., 0peFandvy, Vo ... vy € V}
Our aim is to show that W is a subspace of V.
1. Letu,veW

U=ouVvi+opVvy + ... + oz,
V= B1V1+ Bsz + ...+ BnVn
u+vs= (O(.1V1+ owVy +.. + oV ) + (B1V1+ Bsz + . +BnVn)
= (Otl'l' B1)V1+ ((X2+ Bz)Vz + ... T+ (ot Bn)Vne W
2. LetveWanda €F
ov=o(ogvitopvy + ...ty )=
Zo(ogvi) + alopvy) + ... +a(onVn)
=(aag)vi + (aap)ve + ... + (aop)Vp € W
3.0=0v4+0v, +.... +0vpeW
Hence W is a sub space of V.
The subspace W is called the subspace generated by vi v , ... Vj
Note: If W=V, i.e every element of V is a linear combination of vy ,v, , ... v, then we
say thatvy v, , ... v, generate V.
LetS={vi,vo,... vy}andag,0p ,... ,an €F
An element ve V of the form v=oyvi+ ooV, + ... +anv, iscalled a linear

combination of elements of S.

Notation : L(S) denote the set of all finite linear combinations of elements of S.
L(S) is a subspace of V

Example 4.2.16:
V = R® overR
Letv,=(1,1,00 v».=(0,1,0)
Vi Vo e Vand oq,0, € F
LetW={v:v= ayvi+apv, }isasubspaceof V.
L(S) =L ({(1,1,0), (0,1,0)})

Example 4.2.17 : Let V =R*> overR
Letv,=(1,0,00) v»=(0,10) v3=(0,0,1)
Every element of V is a linear combination of v; vy and vs
Let (x,y,2) e V (x,y,2) =x(1,0,0) +y(0,1,0) +z(0,0,1)
=XVy+tYyVotZvs
We say that (1,0,0) , (0,1,0) and (0,0,1) generates >
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Example 4.2.18: Letu=3x*> +8x -5, v=2x* +3x -4and
W =Xx° - 2x -3 .Write u as a linear combination of v and w.
Solution
U=av+ pw = a(2x? +3x -4) + B(x* -2x -3)
3x* +8x—5 = (2a+ B)X*+ (30 -2B) X + (- 4o + -3 B)
200+ =3
30.-2p =8
-4o. +-33 = -5 Solving simultaneously o« =2 and B =-1 satisfies the three equations
Therefore
u=2v+(-1)w
Activity 4.2.10 :Letu =(1,-3,2) ,v =(2,-2,0) and w = (0,-1,1) Write (7,-1,0) as a linear
combination of u, v and w.

Activity 4.2.11 : Find a subset 5 ¢ B? which is closed under scalar multiplication but not
under vector addition. Do the same for R®.

Activity 4.2.12: Consider the set %R°of ordered triples of real numbers and check whether or
not the following subsets are subspaces

1. W={(xy0):xyeR}
2. W={(xy,1):xyeR}
Example 4.2.19: Consider the set W consisting of all 2x3 matrices of the form

a b c

d 0 0]
where a, b, c and d are arbitrary real numbers. Then W is a subset of the vector space M3
(set of all 2x3 matrices). Show that W is a subspace of Ms.

Solution:
a b ¢ a, b, ¢

1) Letu=| * * 7 andv=| > 2 ZlinW.
d 0 O d, 0 O

Then

U4y = a,+a, b +b, c,+c, is in W
d,+d, 0

2) If «is a scalar, then

aa, ob, ac, | . .
au = isin W
ad, 0 O
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0 0 0. .
3. isin W
{0 0 O}

Hence W is a subspace of Mas.

Example 4.2.20: Let W be the subset of R® consisting of all vectors of the form (1, a, b),
where a and b are any real numbers.Show that W is not a subspace of R .

Solution:
Letu= (1, a;, b)) andv =(1, ay, by) be vectors in W. Then
u+v=(1a, b)) +(1,ay b)) =(2,ar+ay, by +by) isnotin W,

Since the first component of u + v is 2 which is different from 1. Hence W is not a
subspace of R®.

Example 4.2.21:

Let V be a the set of mxn matrices over a field F. For A an element of V let U be the set
of all nx n matrices satisfying AX = 0. Show that U is a subspace of V . (U is called the
null space of A and is denoted here by N(A). It is sometimes called the solution space of
A)

Solution
(1) A0=0,s00 € N(A)
(2) fX,Y e N(A),then AX=0and AY =0,s0 A(X+Y )=
AX+AY =0+0=0andso X+Y eN(A)
(3) If X e N(A) and a €F, then A(aX) = a (AX) = a0 =0, so aX € N(A).

For example,

10
a.ifA= (O J , then N(A) = the set consisting of just the zero vector.

1 2 -2
b.IfA= (2 4}, then N(A) is the set of all scalar multiples of [ 1 )

Definition 4.2.4: Let V be a vector space over a field F and let S#2 , Sc V . the
subspace L(S) is called the subspace generated by S (or the subspace spanned by S)
Remark: 1.1fS=, define L(S) ={0}

2. If L(S) =V, then S is called a set of generators of V' or a spanning set of V

Example 4.2.22: Different sets may generate the same subspace
V =R? overR
S={(1,0,0), (0,1,0), (0,0,1)} generate R* .
S={(1,00),(0,1,0),(0,0,1), (1,-1,1)} generate R* .

Notation : IfS={ vy ,v2 ,... v, }.We shall denote L(S) by [v1,v2 ,... Vq]
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Example 4.2.23: Let U be the set of points on the plane with equation
X+3Y+22=0

Solution

U ={(a(-3,1,0) +b(-2,0,1) : a,b eR}
U is a subspace of R* .every vector in U is written interms of two specific vectors
(-3,1,0) and (-2,0,1) .We express this fact by saying that U is spanned by (-3,1,0) and
(-2,0,1).That is

U =1[(-3,1,0) ,(-2,0,1)]

Example 4.2.24: Let V= R* . LetS = {(,1,0),(0,-1,1), (1,0,1)}.
Consider v = (a,b,c) € R® .
Determine the conditions on a,b,c so that v €[S] =[(1,1,0), (0,-1,1) , (1,0,1)] .

Solution
Let v=(ab,c) €[S]. Then (a,b,c) = a(1,1,0) +B(0,-1,1) + v(1,0,1)
Comparing coefficients
a=oty
b=a-p
C=P+y
Solving the equations we get
a=b+c
So(ab,c) €[S]ifandonlyifa=b +c.
Consequently , (2,-1,3) €[S] while (2,-1,2) ¢ [S]
Example 4.2.25: R? is spanned by (1,1) and (3,2).because
(a,b) eR? can be written as
(a,b) =(-2a+3b)(1,1)+(a-b)(3,2)
Activity 4.2.13
Show that?? is spanned by (1,0,2) ,(0,1,0) and (1,-1,1)

Theorem 4.2.5: Let vy ,v2 ,... Vy, W be vectors in the vector space V .Suppose
We [vi,V2 ,... Vn] .Then
[Vive , ... vp W]=[vi,vo,... Vq]
Proof
) [Vive ,...valcvi,ve,... Vq,W]
Letve[vi,va,... Vn]
> V=o1VitopVvy + ... + o,y
=ouVit oV + ... FonVy + 0w
=>Vvelvi,V2,... VW]
i) [vive,... Vo w]lc [vi,va,... V]
let vel[vi,vo,... Vyh,W]
V=o1Vi+opve + ... +opvy +ow
ZouVvitapVvy + ... oy Fo{Bivit Bave + ... + BV, ) SinCe W
€ [vi,va,... Vvn]
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= [Otl + aBl]Vl + [(12 +(X[32]V2 +. . .+ [Otn + OLBn]Vn

=>Vvelvi,Vo,... Vo]
From (i) and (ii)
[ViVve ,... vp]l=[vi, V2 ,... Vo W]
Corollary 4.2.6: Letvy Vo , ... Vo W1 , W2 , ... W, bevectors in the vector space V
Supposew; € [Vi,V2 ,... Vp ] fori=12,...... ,m.Then
[Vive oo Vp]=[Va V2 o VW1 \Wo e Wiy ]

Proof : By using the above theorem and induction.
Example 4.2.26: Let V = R® overR
U; =[(1,0,0),(0,1,0), (0,0,1) ]
U,=[(1,0,0),(0,1,0),(0,0,1), (1,-1,2)]
(1,-1,2) =1(1,0,0) + (-1) (0,1,0) + 2(0,0,2)
Therefore , U; = U,
Theorem 4.2.7: Suppose each of X, Xz ....., X, is a linear combination of yi, Y7 .....,ym.

Then any linear combination of Xy, X ....., xn is a linear combination of y1, > ....., ym
Proof:
Suppose X;= a1 Y1t diz Y2 + ...+ Qlim Ym 1<i<n

Let z be a linear combination of the x;’s .That is
Z= B1X1+ Bng + ....+Ban
Z = Bi(ou1 Yritour Yo + ...+ aum Ym )HP2(0t21 Vit 022 Yo + + dom Ym )
+---+Bn(an1 Y1t On2 Y2 + + Onm Ym )
= (BroartPoooit.. . AProns) Yit(Brouz +P2 o2)+...  +
( Blalm"'BZOCZm +.. -+Bn(xnm )ym

Which shows that z is a linear combination of y1, v ....., ¥m

Ccorollary 4.2.8: Two Subspaces [X1, Xz ....., xp] and [y1, Y2 ....., ym] are equal ifeach
of X1, Xz ....., Xy is @ linear combination of y;, y> ....., ynand each of y1, y> ....., ym.

is a linear combination of X, X» ....., Xp.

Proof : It is left as an exercise for the student.

Example:If x and y are vectors in R", then [x .y ]=[x +y, X —V].
Solution.
Each of x + yand x —y is a linear combination of x and y .
Also x=% (x+y)+% (x-Yy) and
y=-%(x+y)+%(x-y)
so each of x and y is a linear combination of x + yand x - y .
Activity 4.2.14
1. Let U:{(x,zy,z): x>0} .Is U is a subspace of R®
2.. Let V = R be the vector space over the field R with respect to the usual addition and
scalar multiplication.
a) Show that U={ (x,y) [ x—2y =0} W ={ (X, -X) | x €R }are subspaces of V.
b) Find an expression for U m W and show that U n W is a subspace of V.
c) IsU U W asubspace of VV? Prove or give a counter example.
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Activity 4.2.15

Which of the following subsets ofR? are subspaces?
@{(xy) x=2y}

(b) ){(x,y) :x=2y and2x =y }

(©) {(xy) x=2y+1}

(d) ){(x.y) :xy =0}

Activity 4.2.16

Write
1. (2,2,3) as a linear combination of v; =(0,1,-1), v, =(1,1,0),
v3 =(1,0,3)
2.(a,b,c) as a linear combination of v; =(0,1,-1), v» = (1,1,0),
vz =(1,0,3)

4.3 Linear dependence and independence of vectors.

Suppose we are given a generating set A for a vector subspace U of vector space V .
One question that naturally arises is : Is there any redundancy in A in the sense that
some proper subset of A generates U? To answer this, we start with

Linear dependence and independence of vectors

Definition 4.3.1: Let V be a vector space over a field F and let

V1,V2 , ... V,beelements of V .We say that v;,v, ,... v, are linearly dependent
over F if there exist oy, a2 , ..., an notall zero such that oyvys + apvy + ... +
anVy = 0. Otherwise we say the vectors are linearly independent

Remark : If vi =v; for someiand j with iz, thenvy v, , ... v, are linearly

dependent since we can take a; =1 and o;=-1 and every other o is zero.
Note : The empty set of vectors is linearly independent since the definition holds
vacuously.
Example 4.3.1 . If vy, Vo, ..., vk are K vectors in any vector space and v; is the zero
vector,
Then S = {v1, Vo, ..., vk} is linearly dependent.
Solution: We can show by letting ¢; =1 and ¢; =0 for j =i.Thus
O0.v, +0.v, +---+ ¢V, +---0.v, =0 because v; =0.
Hence every set of vectors containing the zero vector is linearly dependent.
It is immediate from the definition that any set containing 0 is linearly dependent.
Example 4.3.2
1. Asingleton set {x} is linearly independent iff x 0
2. (x,y}is linearly independent iff none of x and y is a scalar multiple of the other.
Example 4.3.3: LetV = %% over®
Show that the following sets are linearly independent
1. vi=(110),v.=(111)
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2. Vi = (1,1,0) , Vo = (1,1,1), V3 = (0,1,-1)
3. vi=(0,1,-1),v,=(1,1,0),v3=(1,0,2)
Solution
1. Suppose asVvi+ayVve,=0
Then 04(1,1,0) + o (1,1,1) =(0,0,0)
The above implies that

o1 +op=0 Q)
op +oap=0 (i)
as =0 (iii)

Substituting (iii) in (i) we getoy =0

Therefore { v1, v2} is a linearly independent set.
2. Suppose oy Vi +oayVa+ozVvz=0

Then 04(1,1,0) + a2 (1,1,1) + a3(0,1,-1) =(0,0,0)

The above implies that

o1 + op=0 0]
o1 top +o3=0 (II)
o - o3=0 (III)

Adding (ii)and (iii) we get o + 20, = 0 equating with (i) ,
ou =ap =0which implies az=0
Therefore { vi, v, ,v3} is a linearly independent set.
3. Suppose oy Vi +apVa+ozVvs=0
Then a3(0,1,-1) + a2 (1,1,0) + a3(1,0,2) =(0,0,0)
The above implies that

o +o3=0 Q)
op +top=0 (i)
-ap +203=0 (iii)

Solving simultaneously we get oy = o, =oaz= 0 which Therefore { v1, V2 ,v3} is
a linearly independent set.
Example 4.3.4:Show that the following sets are linearly dependent
1. S={(-1,3), (2,-6)} is a linearly dependent set
2. S'={(-1,3), (2,-6) , (1,4) } is a linearly dependent set
Solution:
1. letvy;=(-1,3) and v, = (2,-6)
Suppose oy Vi + o V2 =0
-ap +20=0 (i)
3ay +-6a, =0 (ii)
Solving simultaneously , we get 0 = 0.That is the system have infinitely many
solutions. As an example , oy =2 and o =1
Therefore { v1 , Vvo} is a linearly dependent set.
2. Letv;=(-1,3), v = (2,-6) and v3= (1,4)
Suppose oy V1 + o Vo + a3 V3 =0
o (-1,3) +0z(2,-6) + as(1,4) = (0,0)
Take oy =2 , 00, =1 and a3=0
Therefore { v1, v, ,v3 } is a linearly dependent set.
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Activity 4.3.1:
Show S ={(-1,0,2), (-5,2,3),(3,-2,1)} is a linearly dependent set

Example 4.3.5:
Show S ={(1,1) , (-1,0), (2,-1)}is a linearly dependent set
Solution
Suppose
(010) = 0Ll(:l-’]-) T oo ('1’0) + a3 (21_1)
0= aq-o0p +203
0= o1 - 03 = 01 =03
0= -0 +203 = 304 - o =0=0, =304
Therefore S ={(1,1) , (-1,0), (2,-1)}is a linearly dependent set .
As a particular case
1(1,1) + 3(-1,0) + 1(2,-1) = (0,0)

Activity 4.3.2:
Show S ={(3,1,-4) , (2,2,-3) , (0,-4,1)}is a linearly dependent set

Example 4.3.6: Let V = R* over®R
1.Show that the following sets are linearly dependent
{sinhx , coshx , e* }
2.V = Py(x) = {ax® + ax*+ ap : ajeR }over R
{<*+4,-2x*—-8x ,x—1}is a linearly dependent set
Solution:

1. Let v;=sinhx , v, = coshx and v;= e
Suppose oy Vi + o Vo + oz V3 = 0.
o Sinhx + o coshx + oz =0
—e™ e‘+e”
oz (
2 2
Collecting like terms

(= ;a_z +ag) +eX(Z 7 ) =0

X

)+ o e*=0

Otl(

o, +a,

+03=0

O, =0y _

2
Which implies that oy = o, and a3 =- o
{sinhx , coshx , &* } is a linearly dependent set.
2.0+ 4, -2x*—8x ,x-1}
Let vi= X%+ 4 v, =-2x% —8x and va=x — 1
Suppose oy Vi + o Vo + oz V3 = 0.
a1 (X%+ 4) +0, (-2x2 — 8x) +oig (X —1)=0
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(o +-20 )X° + (-8t +0i3 )X + (4o - 03)=0

oy +-200 =0 (i)
-8ap ta3=0 (i)
dog-a3z =0 (III)

Solving (ii) and (iii) simultaneously, we have 4o +-8a; = 0.Solving 4oy +-8a, =0
with a4 +-2a, =0 .We have

oy = 2a; .Finally solving with (iii) , we get oz = 8as,

Hence we have oy = 20, and oz = 8o,

Which shows that {x*+ 4, -2x*—8x , x—1 }isa linearly dependent set

Example 4.3.7 :
Recall that

S={(1,1,0),(11,1), (0,1,-1) }is a linearly independent set

S'=4{(1,1,0), (1,1, 1) } is a linearly independent set

S={(-1,3), (2,-6)} is a linearly dependent set

S'={(-1,3), (2,-6), (1,4) } is a linearly dependent set
Remark :
Let S be a finite set of vectors in a vector space V .
a.If Sis a linearly independent setand S'c S, then S* is also a linearly independent set
b. If Sis a linearly dependent setand S = S|, then Slis also a linearly dependent set
c. If 0 € S, then S is a linearly dependent set .
d.If any element of S is a scalar multiple of the other then Sisa

linearly dependent set.

Example 4.3.8 . In the plane, any three or more vectors form a linearly dependent set,
whereas any set consisting of one nonzero vector or any set consisting of two non-
collinear vectors is linearly independent. The same holds in B2 In B* four or more
vectors are linearly dependent, whereas any two non-collinear vectors or any three
non-coplanar vectors are linearly independent.

Theorem 4.3.1: Let V be a vector space over field F.Let vy v, , ... v, be linearly
independent elements of V .Letay, 02 , ... , 00 ,B1 B2, ..., PBne Fsuch that
Vit oV + ... FonVy = Blv1+ B2V2 + ... + BnVn then a; = B| 1=12,...... n
Proof:

Suppose that

ouVitopVy + ... oV = Bavi+ Bave + ...+ BV

:>(Otl - Bl)Vl + (Otz - Bz)Vz + . . .(ocn - Bn)vn =0

=0 - B1= 0, o - Bz :O, .. ,0n - BnZO

o =B 1=12,...... n

4.4 Bases and dimensions of vector space

We have an intuitive idea of dimension.For instance , we think of lines as one
dimensional, planes as two dimensional , and XYZ space as three dimensional.In order to
make the idea of dimension precise , rather than intuitive , we need to introduced two
concepts —spanning and independence . For example three vectors lying along the X,y
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and z axes respectively will span xyz space.If certain vectors both span a vector space V
and are independent , then they provide a minimum collection of directions for movement
in V , and their number in V’s dimension.

A vector space may have many generating sets. For instance the sets A=
{(1,0),(0,1)} and B= {(1,0),(0,1),(2,1)} are generating sets for R* Infact R? itself a
generating set of R% .There is some repetition in B and %2 in the sense that some proper
subsets of these also generate )2 where as A donot have this repetition .We study the
latter type of generating sets in the sequel.

Bases

Definition 4.4.1: Let V be a vector space over a field F .The set {vi ,v> ,... v, }ofn
vectors of V forms a basis for V if
Bl. vi,v2 ,... V, SpanV and
B2. {vi,v2 ,... Vv, }islinearly independent

Example 4.4.1: Let V = R® over R
Show S = {(1,0,0) , (0,2,0) ,(0,0,5) } forms a basis for V.

Solution
To show that S is a basis we have to show that S is a.Linearly independent set and
Spans V
Suppose a4(1,0,0) + a2(0,2,0) +03,0,0,5) =0
=o1 =0, 0o=0andaz3=0
Hence S is a.Linearly independent set
LetveV =v=(xy,2)

(y.2) =x(1,0,0) +Y4 (0,2.0) + 2£(0,05)
Hence S = {(1,0,0), (0,2,0) ,(0,0,5) } forms a basis for V

Example 4.4.2:.Let V = P, (x) = {a;x® + axx*+ ap: aie®R fori=0,1,2} over K.
LetS={2,x-2, (x—2)?} Show that it is a basis

Solution

To show that S is a basis we have to show that S is a.Linearly independent set and
Spans V.

200 + 02 (X-2)+az(x-2)2=0

= azX? + (0 - 4 ag)X + (dag- 20, +201) =0

>0 =0=>0w=0=o0 =0

Span P; (x)
ax? +axX+ ay = (X —2) %+ ap(X-2) + 20

=0 =a , doy+ay =a1 , 203 =ag

= o1 Tay , 00=a +t4a,, oz=ay2
ax? +ax+ ag = ap(x—2) %+ (ar+4a, )(x-2) + a2 (2)
Hence { 2, x-2 , (x — 2) }forms a basis for V
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Theorem 4.4.1 : Let V be a vector space
If {vi,v2 ,... v, }generates V and {wi ,W, ,... Wy }s linearly independent , then
m<n

Proof : We prove by contradiction.
Suppose not , m >n

wi #z0, 1=1,2,...... m otherwise linearly dependent
Since {vi,v2 , ... V, } generates V, every element of V can be written as a linear
combination of vj‘s, in particular wy ,
Wi = oVt oovy + ... +apvy notall o;’s are zero because
w; #0
Suppose ay= 0
:>OL1_1 Wy= V1+(0L1_1 (12)V2 +(0~1_1 (13)V3 + ... +((11_1 Otn)Vn
—=V1i= Otl-l W1+(- Otl-l OLz)Vz"‘(- OLl_l (X3)V3 + ... +(- (X]__l (Xn)Vn
=vie [wy, V2 , ... V]
=[vi Vo oo Vo] = [wr,ve ... V]
Similarly
Wy = Biwi+ Bova + ... + Bpvy notall Bi’s are zero because
w, =0
IfB2=P3= ... =Pp=0 ,thenPB=0 ,w, =0

= Wo+ (-1) B1W1 =0
= (-1) B1W1 + 1w, +0ws. .. +0wp,=0
= {w1 ,W, , ..., Wy }are linearly dependent which is a contradiction
= 3Bi 1#0suchthat B; =0 .Letitbef,.
Wy =Biwy + Bovo + ... + Bavy
=B W = (B2 Bwa + Vo + (B2 Ba)Vat ... +(B2 " Br)Vn
=Vy = (-B2 Po)Wa + BoWo + (B Ba)Vat ... +(-B2 " Bn)Vn
=Voe [wy ,Wo,Vs... V]
= [vi,ve,... Vo] =[wi, Vo ,... V]
= [wy,W2 V3... , V]
Continuing in this manner ,
[Vi,vo , ... vp]=[wi Wo,.... W] =V
Sincem>n and wp+1e Vand wp.1#0
Since {vi1,v2 ,... Vv, } generates V and
V=[vy,Vo,... Vo] =[W1,Wo,.... W]
Wh+1 =Wy + aWo , . ... +a,W, notall a’s are zeroes
since Wp+1#0
SaWit apWs. . + aaWp+(-1) Wy + 1+ 0 Wy 40+ OWp e 3t.... +0 wp=0
= {wp Wy, Ws...,Wy}isa linearly dependent set.. Which is a contradiction.
Corollary 4.4.2: Let V be a vectorspace and {v1 ,v2> , ... V, } be a basis for V .then all
other basis of V have n elements.
Proof:
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Let {w1 , W5, ws ... ,wn} be another basis of V
i. Since {vi,V2 ,... Vv, }basis of V and {w; ,w, , Ws. .. ,Wn}is linearly independent,m
<n.
i.Since{ws,W,,ws. . . W }s a basis of V and {vi ,v2,. .. v, }s linearly independent , n
<m From (i) and (ii) ,m=n
Example 4.4.3: Finding a basis contained in a finite generating set
{vi.Va2,... Vn}
Let U = {(x,y,zw)eR* 2x+z + w = 0}
Let A= {(1,0, 1,-3),(0,0,1,-1),(4,0, 1,-9),(0,1,0,0) }.Find a basis for U.
Solution
Take B = {(1,0, 1,-3)} .Since (1,0, 1,-3)= (0,0,0,0),B is a linearly independent set.
(0,0,1,-1) ¢[(1,0,1,-3)]( because one is not a scalar multiple of the other. )
C={(1,0,1,-3),(0,0,1,-1) } is a linearly independent set.
Is (4,0, 1,-9) €[(1,0, 1,-3), (0,0,1,-1)]
Yes since (4,0, 1,-9) =4(1,0, 1,-3) +-3(0,0,1,-1)
So,[(4,0, 1,-9),(1,0, 1,-3), (0,0,1,-1)] = [(1,0, 1,-3), (0,0,1,-1)]
Is (0,1,0,0) €[(1,0, 1,-3), (0,0,1,-1)]? No (verify)
therefore , {(1,0, 1,-3),(0,0,1,-1),(0,1,0,0) } is a linearly independent set.
Since the dimension of U is 3 and {(1,0, 1,-3),(0,0,1,-1),(0,1,0,0) } is a linearly
independent set , {(1,0, 1,-3),(0,0,1,-1) , (0,1,0,0) } is a basis for U.

Activity 4.4.1 Find a basis for the solution set U to the system
X + y+5z+2w =0
X - 2z+4w =0

Definition 4.4.2: Let V be a vector space .The number of elements in a basis of V is
called the dimension of V , denoted by dimV.
Remark : If dim V is finite , then we say V is finite dimensional.. otherwise V is infinite
dimensional.

We call a vector space finite dimensional if it has a finite basis . Clearly any
vector space with finite generating set A is finite dimensional since A contains a
minimal generating set.From now on we will consider only finite —dimensional vector
spaces unless otherwise stated.

If V = {0} .it has no basis , then we say DimV =0

Example 4.4.4 . : LetV = R over R

{(1,0),(0,1)} isa basis of V.DimV =2
Example 4.4.5 Let V = P, (x) = { agx® + ax® + apx*+ ag:aeR over R{x>, x* ,x ,1
}}isabasisof V.DimV =3

_Activity 4.4.2: Find the dimension of V where V = R* over®.Justify your reasons.
Example 4.4.6 Find the dimension of V where VV = P, (x) = {a;x* + axx™+ ap : aieR
for i =0,1,2 } over R.Justify your reasons.

Solution
Since {2, x-2 , (x — 2) *}forms a basis for V, Dimension of V is 3
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Definition 4.4.3 : Let {v1,v2 ,... Vv, } be aset of elements of a vector space V. Let r
e N such that r < n.We say that {vi,v> ,... V; }is a maximal subset of linearly
independent elements if vy v, , ... v, are linearly independent and if in addition
givenanyv; i>r,the elements vy ,v, ,... Vv, V; are linearly dependent.

Note: The above definition says that Let V be a vectorspace .A linearly independent
subset W = {v; ,v2 ,... vy} of Vissaid to be a maximal set of linearly independent
elements if any subset U of V such that W — U , then U is linearly dependent.

Example 4.4.7: Let V = ®* over R

W ={(4,0,0), (0,3,0) ,(0,0,-5) }.Show that W is a maximal set of linearly independent
elements

Solution

Let U < V such that W c U =3u € U such that ugW

Let U ={(4,0,0), (0,3,0) ,(0,0,-5), (a,b,c) }

We have to show that U is linearly dependent

(a,b,c) = a/4(4,0,0) + b/3(0,3,0) + ¢/-5 (0,0,-5)

1(a,b,c) + - a/4(4,0,0) +- b/3(0,3,0) + ¢/5 (0,0,-5) = (0,0,0)
= U is linearly dependent

Hence W is a maximal set of linearly independent elements

Theorem 4.4.3: Let V be a vector space and {vi ,v> ,... V, } be a maximal set of
linearly independent elements in V .Then {vi,v> ,... Vv, }abasis for V.
Proof : We have to show that{vy ,vo ,... v, } generates V
Letve V, {vi,v2 ,... vy, V }isa linearly dependent set
3 oay,02, ... +tan,anotall zero such that
Vit opve + ... +opt+ av=0
a#0 ifa = 0,then {vi,v2 ,... v, }islinearly dependent.
oaz0 = av=(o1) Vs +(-opva)+ ... +(-on)Vy
= V= (-0(1/0() Vi1 + (-Otz/OL) Vo +, . + (-OLn/OL) V1in
= {V1,V2 ,... Vy } generates V

Example 4.4.8: W = {(4,0,0) , (0,3,0) ,(0,0,-5) } is a basis of ®* SinceW isa
maximal set of linearly independent elements

Theorem 4.4.4: Let V be a vector space anddimV =n .If {vy,vo, ,... vy }isa
linearly independent subset of V.then {vi,v>, ... v, } abasis for V.

Proof : Since dim v =n, any basis of V has n elements. let

{vi,v2 ,... vy} be a linearly independent subset of V.

Vi,V2 ,... Vq, ,V are linearly dependent .otherwise the number of elements in a basis
(generators).hence {vi,v2 ,... v, }isa maximal set of linearly independent
vectors. By the above theorem {vi,v> ,... Vv, }abasis for V.

Corollary 4.4.5: Let V be a vector space and W is a subspace of V .If dim V = dim
W, thenV =W

50
Addis Ababa University , CNCS



Proof :LetdimW =n .let {vi,vo ,... v, }beabasisof W. Then [vy,vo,... Vp]=

w

SincedimV =nand {vi,v2 ,... vy }isa linearly independent subset of V, {vi,v2,.
. Vp }abasis for V by the above theorem =[vi,v2,... vy ]=V =V =W

Theorem 4.4.6: Let V be a vector space and dim V = n and let W be a subspace of V.

(i) W = [0} has a basis

(iii) DimW <dimV=n

Proof : Since W = [0}, 3 wy# 0 such that wie W

a. IfW =[w], then {w} is a basis of W

b. If W= [wi], then 3 wye W such that wp&[w]

Since w; is not a scalar multiple of wy , {wy, wy} is a linearly independent set.

If [wi, wy], then {wi, wy} is a basis of W.

Otherwise proceeding in this manner , we can find a linearly independent set {w; ,w, ,
. W }such that

W=[ws Wy ,... Wn]ie{ws,wy ,... Wy }s a basis of W.

At most m = n( the maximum is when m =n

Theorem 4.4.7( Extension of a linearly independent set in to a basis) Let V be a
vector space and dimV =n. Let v,V , ... Vv, be linearly independent elements of V
.Then there exists Vi1 , V2, . Vpe Vsuchthat{vi,ve,... ViVu1,. Vy}isa
basis of V.

Proof : If r <n, then by definition of dimension vi,v2, ... v, cannot form a basis of v
and hence can not generate V. Hence there exists vis1€ V such that vy & [ Vi,V . ..
Vr ].Then

{v1,V2, ... V¢, Vi1}is alinearly independent set.proceeding in this manner Vi1, V2,
. ., Vm such that
Vi,V2, ... Vi V1, . Vp are linearly independent. By the above theorem m <n .If we

take m to be maximal, then

{V1,V2, ... vy }isalinearly independent set.

Vm+1 € V such that vime1 & [V1,V2, ... Vin] and hence

V1,V2, ... Vms are linearly independent contradicting that m is maximal .Hence
{v1,V2, ... vy }isabasis of V.

Example 4.4.9: Let V = R?

Let W = {(1,3)} Extend W to a basis of V

Solution (1,2) #[(1,3)]

Hence U = {(1,2),(1,3)} a linearly independent set and maximal . Hence U is a basis.

Example 4.4.10 : Let U = {(x,y,z,w)eR* 2x+z + w = 0}

Let A={(1,0,-1,-1)} Extend A to a basis for U.

Solution

Check that B = {(0,1,0,0),(1,2,-1,-1),(1,0,0,-2)} is a basis for U
(1,0,-1,-1) € U since it satisfies 2x+z +w =0
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Hence Ac U.A is a linearly independent set since (1,0,-1,-1)= (0,0,0,0).

(0,1,0,0) ¢[(1,0,-1,-1)]

Set A;={(1,0,-1,-1), (0,1,0,0)}

Next we check that whether or not

(1,2,-1,-1) €[(1,0,-1,-1), (0,1,0,0)]

Since (1,2,-1,-1) =(1,0,-1,-1)+2(0,1,0,0) ,

(1,2,-1,-1) €[(1,0,-1,-1), (0,1,0,0)]

Next we check that whether or not

(1,0,0,-2) €[(1,0,-1,-1), (0,1,0,0)].

Since (1,0,0,-2) ¢ [(1,0,-1,-1), (0,1,0,0)], {(1,0,-1,-1), (0,1,0,0),(1,0,0,-2)} is a linearly
independent set.Since the dimension of [(1,0,-1,-1), (0,1,0,0),(1,0,0,-2)] is 3 which is
equal to the dimension of U,we conclude that {(1,0,-1,-1), (0,1,0,0),(1,0,0,-2)} is an
extension of A to a basis for U.

Theorem 4.4.10:Given n vectors in R" , let A be a matrix whose columns are the
given vectors.

1.1f rank of A =n, the vectors are a basis for R"

2.1f rank of A < n, the vectors are not a basis for the vectors are a basis for R"

Corollary 4.4.11: if we have n independent vectors in R" , then they form a basis for
mn

Proof: We form a matrix A whose columns are the n vectors.Since the vectors are
independent , the rank of A is n.By the preceeding theorem, the vectors must be a basis
for R"

Example 4.4.11:
Show S = {(1,1,1) ,(0, 1,1) ,(0,1,-1) forms a basis for V = %?
Solution
Suppose
(0,0,0)= a(1,1,1) + 0, (0,1,1) + a3(0,1,-1)
0= (041
0=op+ o3
0= o2 - 03
Solving simultaneously a; =0 , o, =0 and az =0
S={(@1,1,1) ,00, 1,1) ,(0,1,-1)is a linearly independent set and maximal .Hence S is a
basis.
Or to show S generates R*.Let (a,b,c) € R°
(a,b,c) = 21(1,0,0) + o (1,1,0) + a3 (1,1,1)
a= o1+ o +o3
b=o+ a3
C = 03
o= a-b ,o, =b-candas =c
(a,b,c) =(a—b)(1,0,0)+( b -c)(1,1,0) +c (1,1,1)
S generates %>
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Example 4.4.12:

Show S={x—1,x+1,x*}isabasis for V=P, (x) = {a,x* + axx™+ ap: ajeR fori
=0,1,2 } over ‘R.

Solution

Suppose

ar(X—1)+ ap (X +1)+oazx? =0

Ifx=1, 200+ 03=0

Ifx=-1,-204 + 03

Ifx=0,-oq4+ o

Solving simultaneously ;=0 , a; =0 andagz =0
S={x—1x+1,x*}isalinearly independent set and maximal . Hence S is a basis.

Example 4.4.13:
LetV = R%overR. U={(ab,c):a=band2b=c }
Find basis and dimension of U
Solution :
U={(ab,c):a=band2b=c }
={(b,b,2b): be R}
={b(1,1,2):beR}
=[(11.2)]
DimU=1and {(1,1,2) }is a basis of U.

Activity 4.4.3:
Let V = R over R.
U={(ab,c):a+b+c=0} Find basis and dimension of U
Example 4.4.14:
Let V = R° over R.
U ={(a,b,c) :a=b+2c } Find a basis and dimension of U.
Solution :
U={(ab,c):a=b+2c }
={(b+2c,bc): bceR}
={(b,b,0)+(2c,0,c):bc e R}
={b(1,1,00+c(2,0,1):bc e R}
=[(1,1,0) ,(2,0,1)]
Basis for U is {(1,1,0) ,(2,0,1)} DimU =2

Activity 4.4.4

Show that (1,0,-1),(0,1,0) is a basis for {(a,b,-a) : a,be R}
Show that (-4,2,1,0),(1,3,0,1) is a basis for
{(-4a+b,2a+3b,a,b) : a,be R}

Show that {(1,0, 1),(0,1,-2),(4,2,0)} is not a basis for
{(at+4c,b+2c,a-2b) : a,b,ce R}

3 0Y(0 1)(0 O 0 0).. .
Show that : : , } is a basis for Moy,
0 0)l0O O0)l1 O 2 5
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Example 4.4.15: Let V = Myy, . Let W, be the set of all symmetric matrices in V, and
W, be the set of all skew- symmetric matrices in V.
Show that
a) W; and W, are subspaces of V.
b) Wi nW; = {0}
a) V=W;+W,
Solution
a)
i)0'=0=-0.Hence 0 € Wyand 0 € W,
i) Let A e Wiand o eR. (0A)'= aA'= aA since A is symmetric .
Therefore oA is symmetric
Let A e Weand o eR . (aA)'= aA'= a(-A) since A is skew- symmetric .
=-(aA)

Therefore oA is skew- symmetric
iii) Let AB € Wi. A'=A and B'=B since A and B are symmetric
(A+B)=A+B'= A+B .
Therefore A + B is symmetric
Let AB € W,. A'=-A and B'=-B since A and B are skew-symmetric
(A+B)=A+B'= -A+-B =-(A+B)
Therefore A + B is Skew- symmetric
b.Now we will show W; "W, = {0}
Let A eW; "W, .Ae W;and AeW, . Ae Wy implies that A'=A .
Moreover AeW, implies that A'=-A
A'=A=-A impliessA=-AThus A=0
Therefore W; "W, = {0}
c.Let Be V. We have
B= %(B+ B‘)+%(B— B') . LetB; = %(B+ B') and B, = %(B— B')

1

B, = E(B+B‘) ‘= %(B‘ +(BY)Y L

E(Bt +B) =B;and

1 1 1 1
B,'= =(B-B') '= =(B'-(B")") = =(B'-B)==-=(B-B') =-B;.
'=2(B-B) = (B'~(B")) = J(B'-B)==-7(B-B') =-B,
From the above we can conclude that B; is symmetric and B, is skew symmetric.
Thatis By e Wyand B,eW; .

B+ B, = %(B+Bt) +%(B—Bt) =B
Therefore , V =W; + W,

Example 4.4.16:

LetV = R® over R.

LetU ={(@b,c):c=2b} andW={(a,b,c):a+c=Db}
FindU+W

Solution

54
Addis Ababa University , CNCS



U+W ={u+w :ue Uandw e W}
={(@b,c) +(a;,b;,c1): c=2banda; +c; = by }
={(ab,2b) + (a;,a; +c1 ,C1): ab,a;,c1e R}
={(@,0,0) + (0,b,2b) + (a1,a; ,0) +(0, c1,C1) :a, b,a; ,c1e R}
={a(1,0,0) +b(0,1,2) + a1(1,1,0) + c; (0,1,1) :a, b,a; ,c1€ R}
=[(1,0,0),(0,1,2), (1,1,0) ,(0,1,1) ]

Basis for U + W

Take (1,0,0)

0,1,2) #[(1,0,0)]

Is (1,1,0) € [(1,0,0), (0,1,2)] ?

(1,1,0) = (1,0,0) + B(0,1,2)

There does not exist oo and f . Hence (1,1,0) ¢[(1,0,0), (0,1,,2)]

So {(1,1,0), (1,0,0), (0,1,,2)} is a linearly independent set.

Since U + W is a subspace of V =R®

Dim (U+W) <dim V = 3. Hence dim (U+ W )=3

Therefore { (1,1,0), (1,0,0), (0,1,,2)} is a basis for U + W

Example 4.4.17:

Let V =R? over R.

Let U=[(1,3)] and W =[(2,1)].Find Un'W

Solution :

UnW ={(a,b) :(a,b) € Uand (a,b) € W}
={(ab) :(a,b) = a(1,3) and (a,b) =P (2,1) : o, Pe R}
={(ab):(a,b) = a(1,3)=B (2,1) : a0, Be R}
={(0,0) }

Activity 4.4.5:

Let V = R%over R.

U={(ab,c) :b=3c } and W={(a,b,c):a+b=c} Find a basis and dimension of

UnWw.

Example 4.4.18:

Let V = %% over R.

Let W=[(1,0,2), (2,-1,1) , (1,-1,-1)] Find a basis and dimension of W.
Solution :

Consider (1,0,2).
Is (1,0,2) € [(2,-1,1)]? No Since (1,0,2) is not a scalar multiple of (2,-1,1)

Next consider (1,0,2) and (2,-1,1)

Is (1,-1,-1) € [(1,0,2), (2,-1,1)]?

(1,-1,-1) = a(1,0,2) + B(2,-1,1)

=a=-land B=1

Therefore (1,-1,-1) € [(1,0,2), (2,-1,1)]

Therefore W =1[(1,-1,-1),(1,0,2), (2,-1,1)] = [(1,0,2), (2,-1,1)]

DimW =2and {(1,0,2), (2,-1,1) } is a basis for W.

Activity 4.4.6:
55

Addis Ababa University , CNCS



Determine the dimensions of the subspaces
A.The subspace of %*consisting o of all 4 tuples that satisfy
2x+3y -z-2w =0
b.The subspace of solutions of the system
2x+y =0
x+3y =0
c. The subspace of solutions of the system
X+2y+3z=0
2X-y- z =0
-X + 3y +2z2 =0
d.All polynomials of the form ax* +bx?+c

Example 4.4.19: Let V be a vector space. We have two subsets of V, S; and S,, having
respectively 13 and 15 elements.

a.lf Sy and S; are both linearly independent, Find the dimension of V.
b.If S; generates V' then S, is linearly independent.

Solution

a. The dimension of V s at least 15.

b. False

Definition 4.4.4: Let V be a vector space and {v,,v,,---,v, } be a basis for V. Let ue
V.If u=ayv, +a,v, +---+a,v,, then (a,,a,,---,a,) is called the coordinate vector of u
with respect to the basis {v,,v,,---,v, }.

Example 4.4.20 Find the coordinates of (4,3) with respect to {(1,2), (2,-1)}.
Solution: {(1, 1), (2, -1)}is a basis of R?.

a(1,2)+b(2,-1)=(4,3) => {a‘f‘ 2b=14
a-b=3

which impliessa=2andb=1

Thus, (2,1) is the coordinate vector of (4,3) with respect to the basis {(1, 1), (2, -1)}.
Activity 4.4.7:

Find the coordinates of the following vectors with respect to the basis

(1,0,1) ,(0,2,0),(1,0,-3) for R®

a. (a,b,c)

b. (0,2,-4)

Activity 4.4.8

Find the coordinates of (1,3,0) with respect to the basis {(1,0,0) ,(0,3,0),(0,0,4)}
Solution

1(1,0,0) +1 (0,3,0) +0(0,0,4) = (1,1,0)
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Example 4.4.21 The vectors e; = (1, 0) and e, = (0, 1) form a basis for R?, the vectors e;
e, and e; form a basis for R® and, in general, the vectors e,,e,,---,e form a basis for R".
Each of these sets of vectors is called the natural basis or standard basis for R? R®, and
R", respectively.

Activity 4.4.9 . Show that the set

e S e o 9

is a basis for the vector space V of all 2 x 2 matrices.

2 0
Exampele 4.4.22. Find the coordinates of L 3} with respect to the basis
5= 1 01 Of|0 0|0 1
o 1f|1 off1 1|1 1
Solution
(2,0,1,0)

Activity 4.4.10

a a+b
Determine whether or not the following sets are a basis for {a b 0 } a,beR}. of

Mayo

loolloolli o] oo allz o
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Chapter 2: Matrices, Determinants and Systems
of Linear Equations

Introduction

Linear algebra begins with sets of linear equations in several variables. The
number of variables may be large, or it may be unspecified. In either case we need an
alphabet larger than the ones used in ordinary language. Thus we invent synthetic ones. is
This unit provides an introduction to the basic concepts of matrices and system of linear
equations. You will develop operations on matrices and will work with matrices
according to the rules they obey; this will enable you to solve system of linear equations
and to do other computational problems in a fast and efficient manner.

The concept of matrices has a wide range of application in our life. One of the
main applications is to write systems of linear equation in a compact form, which enables
you to solve them very easily and efficiently.

Objectives
After successful completion of this unit, you will be able to:

e Define a matrix

e Apply operations on matrices

e Describe properties of matrices

e Reduce matrices into reduced row echelon form

e Find the inverse of a matrix by using elementary row
operations

e Solve system of linear equations by using Guassian
elimination

e Find the inverse of a matrix.

2.1. Definition of matrices.

Definition 2.1.1: An mxn (m by n) matrix A is a rectangular array of mn real (or
complex) numbers arranged in m horizontal rows and n vertical columns:
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Remark : A matrix is a rectangular array of numbers, or symbols , like the above.The
rows of a matrix are its horizontal lines: for example the second row of the matrix A has
entries az1 ,az , ....,azn Note that the first subscript names the row from which the entry
is taken . The columns of the matrix are its vertical lines; the first column of A has entries
a1 ,a21 , ....,am1 .The second subscript names the column from which the entry comes.
Notation: When the entries of a matrix are named by means of subscripts, the matrix can
be abbreviated by telling the range of the subscripts.

The above matrix A will be written as A= [a;; ] man (1=1,2,...,m ;j=1,2,...,m).

Example2.1.1.

2 0 3

A= IS a 2x3 matrix with a,; = -1 , a3 =4
-1 1 4

A=[1 0 -23]isalx4 matrix. with a;3=-2

A =[1] is a 1x1 matrix and a;; =1

3j ,and B =[b, ] (i=1,2;j=12) with

- . (2
Activity 2.1.1: Let A =[a;] be a matrix (0

b; =aji . Write down B explicitely.

Definition 2.1.2 :Let A be an mxn matrix. If m = n, we say that A is a Square matrix of
order n.

. j IS a 2x2 or square matrix of order 2

2
Example 2.1.2 : A= (4

01 5
A=|2 1 -1 isa3x3orsquare matrix of order 3.
1 0 13

Definition 2.1.3 :The mxn zero matrix 0, is the matrix with all entries equal to 0.

n

O = o :

59
Addis Ababa University , CNCS



Definition 2.1.4:Two mxn matrices A= [a; ] and B= [b; ] are said to be equal ifa; =b; 1
<i<m, 1<j<n, that is, if they have the same size and the
corresponding components are equal.

01 5
}and 2 1 -—1]are not equal since they do not
1 0 13

2
Example 2.1.3: The matrice{ 1

have the same size.
There are three binary matrix operations These are matrix addition , multiplication of a
matrix by a scalar and multiplication of two matrices.

2.2. Operations on matrices.

Matrix Addition
Definition 2.2.1: If A=[a; Jand B=[b; ] are mxn matrices that is A and B two matrices of

the same size, then their sum written A + B , is the matrix obtained by adding
corresponding entries of A and B.

Thatis : If A+ B = C, then C is the mxn matrix where C=[c; ], such that ¢; = a; + b
(1<i<m,1<j<n)

Remark : If A and B do not have the same number of rows and columns , their sum is
not defined.

Example2.2.1 : Let
0 -1 4 6 4 -1
A= and B=
-3 2 5§ 7 0 -2
Then
{0+6 ~1+4 4+—1} [6 3 3}
A+B = =

-3+7 240 5+4-2 4 2 3

The Second operation is multiplication of a matrix by a scalar(That is a number)

Scalar Multiplication:

Definition 2.2.2: If A= [a;] is an mxn matrix and o is a scalar, then the scalar multiple

of A by a, aA is the mxn matrix B=[b; ], where b; =aa; (1<i<m,1<j<n).
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Remark : B is obtained from A by multiplying each element of A by a.

0O -1 4
Example 2.2.2: Let A= 3 2 and

-3 12
@ If a=3, then aA=3A=3
-3 2 5

(b) If o = -1, then oA = -1A = (1ﬂi3 , ;‘{3 5 ::}

Definition 2.2.3:
If A and B are mxn matrices, then we define
A -B=A+(-1)B and we call this the difference of A and B.

0 -1 4 6 4 -1
Example 2.2.3 : Let A= and B=

-3 2 5§ 7 0 -2
Then find A-B
Solution

A-B=A+(-1)B

{6 4 —1} {—6 —4 1}
(-1)B= =
7 0 -2 -7 0 2

0 -1 4 -6 -4 1] [-6 -5 5
A-B=A+(-1)B= + =
-3 2 5 -7 0 2| |-10 2 7
Activity 2.2.1
0 1 3
2 -1 -8 1 0 -3 i
LetA= ,B= and C=|-1 3 -2| B. ThenFind
-3 12 3 5 -1 -2
|0 1 6
a) A+B
b) A-B
c) A+C
d) A-2B

Next we state several elementary properties of matrix addition and scalar
multiplication

Theorem 2.2.1: Properties of Matrix Addition and scalar Multiplication

Let A, B, C can be an mxn matricesand «, 5 ¢ R. Then
M1. A+B =B+A ( Commutativity of Addition)
M2. A+(B+C) = (A+B)+C( Associativity of Addition)
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M3. A+0=0+A =A
M4. A+ (-A)=(-A)+A=0
M5. a (A+B) = a A+a B
M6. (a+B)A= a A+ A
M7. a(BA)=(a B)A
M8. 1A= A
M9.0A=0

Proof:

Let A=[a;],B=[b;]and C=[c;] where 1<i<m,1< j<n

M1LA+B=[a;+b;] =[b;+a;] =B+A
M2. A+(B+C) =[a; ] + [ b; +¢;]

:[aij +( bij +Cj )]

:[(aij + bij )+Cij I= [aij + bij ]+[Cij] =(A+B)+C
M3.A+0=[a;+0] =[a;]=A
M4. A+ (-A) = [aij +(- a; )] =[0]1=0
M5.a(A+B)=afa; +b; ] = [aa; +ab; ] =[aa;] + [ab; ] = aA + aB
M6. (o +B)A=(a+ ) [aij]

= [(a+ﬁ)aij]

=[a aij+ﬂ aij]

=[a aij] +[B aij]

:a[aij]+ﬂ[aij]

=a A+ A

M7, M8 and M9 are left as an exercise.

Matrix Multiplication

Definition 2.2.4 : Let A = [a; ] is an mxn matrix and B= [b, ] is an nxp matrix, then the

product of A and B, AB, is the mx p matrix C= [c,, ], defined by

Cik = ainbtaipbot. ... Fainby = Zaubjk (1S i<m,l<k< p).
=t

Note that the product of A and B is defined only when the number of columns of A is
equal to the number of rows of B .

2 -1 -1
Example 2.2.4 Let A= and B = .Find A.B
4 7 1
Solution
A is a 2x2 matrix and B is a 2x1 matrix hence multiplication of matrices is defined .

62
Addis Ababa University , CNCS



AB is a 2x1 matrix .LetC:(Cik ) where (1<i<2,1<k <1) be AB.
c=(Cik) a<i<2,1<k <1)
i=t,k=1 Crp=a,b,+a,b, =21+ (11=-3

i=2,k=1 Cp1=8, b, +a,,b, =4cn+7.1= 3

-3
Therefore AB= ( 3 j

0 -2 -1 1
Example 2.25 LetA=|1 0 4 |(andB={-2 1 2
5 1 1 2
Find a. AB
b. BA
Solution

A is a 3x3 matrix and B is a 3x3 matrix hence multiplication of matrices is defined . AB

is a 3x3 matrix .Let C = ( Cik ) where (1<i<3,1<k <3) be AB.
C=(Cik ) (1<i<3,1<k<3)

Ci -a, by +a;, by +agb,

i=1, k=1, C11= 8,0, +8, 0, + 8,05 =01 +(2)(2) +(1)2=2
i=1 k=2, Cip=2a,b,+a,b, +aP,=00+2)1+1)1=3
i=1,k=3, C13= 105+ 8,055+ 8 055= 03 +(-2)2 +(-1)4 =8
i=2,k=1, Cp;= 105 + 35,0, + 3,305 = 1.1 +0(-2) +4.2 =9
1=2,k=2, C22 = a21'b12 + azz-bzz + a23b32= 1.0+0.1+4.1=4
i=2,k=3, Co3=ayD;+a,b,,+8,05;=13+02+44=19
i=3,k=1, C31= @50, +a5, 0, + a0, =51 +1(2) +1.2=5
i=3,k=2, C3p=ayb,+a,b,+ab,=-50+11+11=2
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i=3,k=3, C33=a5b;+a,b,+a3=53412414=21
Hence

0 -2 -1j|1 0 3 C, C, Cpj 2 -3 -8
AB=(1 0 4||-2 1 2|=|Cy Cp,, Cyul|=1]9 4 19

5 1 1|2 1 4 Cy; Cz Cog 5 2 21
Similarly

1 0 3||0 -2 -1| |15 1 2
BA=|-2 1 2(|1 0 4 |=|11 6 8

2 1 4(|5 1 1 21 0 6

From the above example we can conclude that AB #BA.
Remark : Matrix multiplication is not commutative.

Activity2.2.2
0 1 -2
0 -1 4
LetA= andB=1 0 5
-3 2 5
2 -1 1
Compute AB

Theorem 2.2.2: Properties of Matrix multiplication

If A, B, and C are compatible matrices under multiplication and addition, then

1. A(BC) = (AB)C
2. A(B+C) = AB + AC
3. (A+B)C=AC +BC

Example 2.2.6

3 -1 1 -1 5 4 3 -2
Let A = ,B= and C =
4 5 3 1 -3 0 -3 11

Compute
a. B+C
b. A(B+C)
c. AB
d AC

Solution
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1 -1 574 3 -2] [1+4 -1+3 5+2 5 2 7
a. B+C= + = =
3 1 -3/ |0 -3 11| |3+0 1+-3 -3+11| |3 -2 8

oagso=(d N[ 2 7| _[35+(D3 32+(-1)(2) 37+(-18
AB*O=14 5|3 -2 8] | 45453 42+5(-2) 47+58

[12 8 13

_{35 -2 68}
C_AB:(s —1j [1 -1 5}{3.“(—1)3 3(-1) + (-1t 3.5+(—1)(—3)}
4 5)[3 1 -3| | 41453 4(-1)+51 45+5(-3)

[0 -4 18
119 1 5

3 -1)|4 3 -2 12 12 -17
e. AC= =

4 5)|0 -3 11 16 -3 47
From the above AB+ AC=A(B +C)

Activity 2.2.3
0 -1

1 -2 2 -1
Let A = % , B= OandC:2 3
-1 0 1 -1 -2 3 _—

Compute
a. A+B
b. (A+B)C
c. AC
d. BC

Activity 2.2.4
Suppose A, B and C be matrices such that

6 -1 0 51 2 :
AC = and BC = . Find (A+B)C
-4 0 2 3 2 -3

Definition 2.2.5: Suppose that A is a square matrix and let n be a positive integer, then
we

define A" = AA™!
Thatis A2=AA | A3 =AA%  A*=AA3 andsoon A"= AA™!

Remark : A= |
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2.3. Types of matrices

The Transpose of a Matrix

There is another operation on matrices , this one is a unary operation.

Definition 2.3.1 :If A=[a; ] is an mxn matrix, then the nxm matrix A" =[b, ],whereb,

=a;(1<i<m,1< j<n)is called the transpose of A.
Remark : If A isan m x n matrix , then A’ is an n x m matrix.

1 4
Example2.3.1: Let A=| 3 —1|.Find A'
-2 2

Solution

Since Ais an 3 x 2 matrix , A' is a2 x 3 matrix.
Al :[bij ]Wherebij =a; (1<i<3,1<j<2)
b11 =a,;=1, b12 = ay =3, b13 = ag =-2,
b21 = a12:4, bzz = 322:'1’ b23 =ag = 2
Therefore

A ' =[b. ]= by, b, by, _ 1 3 =2
] b21 b22 b23 4 -1 2

Remark : The transpose of A is obtained by interchanging the rows by the columns of A
Activity 2.3.1:

2 -1 0 6
Let A=

.Find A
4 3 5 -2

Theorem 2.3.1 Properties of Transpose

If o is a scalar and A and B are matrices, then
T1. (A)'=A
T2. (A+B)'= A+ B
T3. (AB)' = B'A'
T4. (0A)'= oAl

Remark : By using property T3 , one can show that (ABC)' = C' B'A' and in general
(A1A,... A=A ASAL
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Example2.3.2: Let

3 -1 1 -1 5
Let A = and B =
4 5 3 1 -3

Compute

1. A

2. B

3.B'A

4.(AB)!
Solution

1 . 0 19
c.B'A'=| -1 ( ]: -4 1
-1 5
5 -3 18 5
dAB_3—1—15_O—418
4 5)|3 1 -3/ 119 1 5
0 19
(AB)'"BA'=|-4 1
18 5

Definition 2.3.2: A square matrix A =(a;) is called an identity matrix if a; =1

whenever
i=jand a; =0whenever i= j .lItisthen denoted by I, or | when the

order is clear from the context.
1 0O

0 0
I, = andl;=|0 1 O
2(00] 3
0 01
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Definition 2.3.3 :A square matrix in which all the diagonal elements are 0 is called a
diagonal matrix..That is A =(a;) is a diagonal matrix iff a; =0
whenever i # j.

-2 00
Example 2.3.3: A=| 0 3 0] isadiagonal matrix
0 0 3

0 0). : :
A= is a diagonal matrix
00

Definition 2.3.4 :A diagonal matrix in which all diagonal elements are equal is called a
scalar matrix.

300
Example 2.3.4: A=|0 3 0] isascalar matrix
0 0 3

0 0). )
A= is a scalar matrix
00

Remark : Scalar matrices can be written as al for some scalar oo and behaves like a
scalar. That is al + Bl =(o + )1 and
ol A = oA

Definition 2.3.5: A square matrix A =(a; ) is called an upper triangular matrix if all
the elements below diagonal are 0, that is a; = 0 wheneveri > ]
Definition 2.3.6: A square matrix A =(a; ) is called a lower triangular matrix if all the

elements above diagonal are O, that is a; =0 wheneveri < j
Definition 2.3.7: A square matrix A =(a;) iscalled triangular matrix if it is either
upper triangular or lower triangular .

Example 2.3.5 : In the following two matrices

2 -1 4 3 00
A=|0 3 7| andB=|2 5 0
0O 0 8 -2 9 4

A is an upper triangular matrix while B is a lower triangular matrix

Definition 2.3.8:A matrix A= [a; ] is called symmetric if A=A .

That is, A is symmetric if it is a square matrix for which a; =a; forall ij.
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2 -1 4
Example: |-1 3 7] isasymmetric matrix.
4 7 8

Note Symmetry of a matrix refers to symmetry about the principal diagonal

Example 2.3.6:1f A and B are symmetric matrices of the same order and
o is a scalar then oA and A + B are symmetric matrices.
Solution:
a. (aA)'= 0 A'= aA . Hence oA is a symmetric matrix.
b. (A + B)'=A'+ B'=A + B.Hence A + B is a symmetric matrix.
Remark : AB may not be symmetric.For example

. 2 1 3 4 i : : 10 9
Consider A = and B = which are symmetric matrices.But AB =
1 4 4 1 19 8

IS not symmetric.

Definition 2.3.9:A matrix A= [a; ] is called skew symmetric if A=A,

That is, A is skew symmetric if it is a square matrix for which a; =-a; forall i, .

0 -3 4
Example2.3.7:A=| 3 0 5|isaskew symmetric matrix since A' = -A.
-4 -5 0

Note: The main diagonal elements of a skew symmetric matrix must all be zero.

Example2.3.8: Let A be any square matrix. Then
a. A+ A" is symmetric
b. A- A' is skew symmetric
c.A can be written as a sum of a symmetric and skew
symmetric matrices.
Solution
Q) (A+A) = A+ (AY=A'+ A
b) (A- A" ) =A'- (AY =A' - (AY = A' -A=- (A-AY).
Hence A- Alis a skew symmetric matrix.

c) Let B:%(A +AY, C = %(A- AY). Then A = B+C .Moreover since B is

symmetric and C is skew symmetric, Any matrix can be written as a sum of
symmetric and skew symmetric.
Activity 2.3.2
Give an example of a matrix which is
a) An upper triangular matrix
b) Whose transpose is an upper triangular matrix
c) A lower triangular matrix
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d) Whose transpose is a lower triangular matrix
e) Symmetric
f) Skew symmetric

2.4 Elementary Row Operations and Inverse of a matrix.

In this section We shall study some operations called elementary operations which can be
used to reduce any given matrix to one with a simple form thereby facilitating the
solution of some problems to be solved for the original matrix.

Row echelon form

Definition2.4.1:An mxn matrix is said to be in row echelon form when it satisfies the
following properties:

R1) All rows consisting entirely of zeros, if any, are at the bottom of the
matrix.

R2) The leading non zero number in a row is 1.

R3) If two successive rows that do not consist entirely of zeros, then the
leading entry of the lower row is farthest to the right than the leading
entry of the upper row.

Example 2.4.1: The matrices

1 200 1 351 4 0 00O
A=|0 0 1 0/,B=|0 01 O 1|,andC=|0 0 O O
0 00O 0 001 3 0 00O
are in row echelon form.
Example 2.4.2 The matrices
1 0 3 4 1 05 4
1111
01 -2 5 01 2 7 i
A=|0 0 0 0],B= and C= are not in row
00 2 01 3 6
0 01 4
00 0 0 00O

echelon form. Because in case of Matrix A Condition R1 failed , Matrix B Condition R2
failed and Matrix C Condition R2 failed

Activity 2.4.1
Give different examples of matrices which are in row echelon form.

Definition 2.4.2 An mxn matrix is said to be in reduced row echelon if its in the row
echelon form and the elements above the first non zero entry any row
are O(the elements below are already 0).
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Example 2.4.3 : Consider

1 200 1 3514
A=|0 0 1 0,B=|0 0 1 0 1],
0 00O 0 00 13
A is in reduced row echelon form while B is not in reduced row echelon form.

Elementary operation

Definition2.4.3:An elementary row operation on a matrix is any one of the following
operations:
a) Interchange two rows .
b) Multiply a row by a non zero constant
c) Replacing a row by the sum of that row and a scalar multiple of
another row.

Notation :

Aij Interchanging the i " with j™ row of A.
Ai > oA; Multiplythe i™ row of A by a.
A > A+ aA; Add o times thej" row of A tothei™ row of A.

Remark: An elementary column operation on a matrix is defined similarly.By an
elementary operation we mean an elementary row operation or an elementary column
operation.

Definition 2.4.4:An elementary column operation on a matrix is any one of the
following operations:

a) Interchange two columns .

b) Multiply a column by a non zero constant

c) Replacing a column by the sum of that column and a scalar multiple

of another column.

Definition 2.4.5: We say two matrices are equivalent if one is obtained from the other
by a finite sequence of elementary operations.

Notation : If A and B are equivalent then we write A ~ B

Example 2.4.4: Let

1 3 51 4 -1 4 0 57 -1 4 0 57
A=|-1 4 05 7|A;2|1 3 5 1 4/A;3/3 -2 5 6 3
3 -2 56 3 3 -2 56 3 1 3 514
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1 3 51 4 |-1 4 0517
Hence, |-1 4 0 5 7|~ 3 -2 5 6 3| Similarly
3 -2 56 3 1 3 51 4
1 3 51 4 1 3 5 1 4
A=|-1 4 0 5 7|A;> 2A;|-2 8 0 10 14| As> Az +-1A;
3 -2 56 3 3 -2 5 6 3
1 3 5 1 4 1 3 5 1 4
-2 8 010 14|A31 2 -5 0 5 -1
' 2 -5 0 5 -1 -2 8 0 10 14
Hence ,

1 3 514 1 3 5 1 4
-1 4 05 7~2 -505 -1
3 -2 56 3] |-2 8 010 14

Note: A is column equivalent to B if and only if A'is row equivalent to B".

Next we state a theorem without proof

Theorem 2.4.1: Any matrix can be reduced to a matrix in reduced echelon form by

elementary operations.

3 5
Example2.4.5: Reduce A = [ 1 2}

a. Into row echelon form.
b. Into reduced row echelon form.

Solution
3 5 -1 2 1 -2
a. A= A A >(-DA
I e Y
1 -2 1 -2
Ar>A+(-3)A A >( 1A
A3 l{o 11} (1) 2{0 1 }

1
Hence {0 1 } is the row echelon form of A.

3 511 -2 10
b. A= ~ A A(2)A
{4_J & 1}1 1()2L J

10
Hence {0 J is the reduced row echelon form of A.
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1 -1 2
Example 2.4.6: Reduce A=|-2 1 -1
o 1 2

a. Into row echelon form.
b. Intoreduced row echelon form.

Solution
1 -1 2 1 -1 2 1 -1 2
A=|-2 1 -1{A2A+(2A1|0 -1 3| A;2>(-DAJ0 1 -3
o 1 2 0 1 2 0o 1 2
1 -1 2 1 -1 2
ASAAHDA 0 1 —3| Ag( %)A3 0 1 -3
0 0 5 0 0 1
1 -1
Hence |0 1 - }stherowechelonformofA.
0 0
b.
1 -1 1 1 0 -1
A=1|-2 1 -1|~|0 1 -=-3/A2A+DA0 1 -3
0 1 0 0 1
1 0 -1 100
A2A+(3)A3|0 1 0 | Ai2A+DA30 1 0
0 0 1 0 01
Activity 2.4.1
1 -1 2
Find the reduced row echelon formof A=|0 1 -3
3 3 -1

The Inverse of a Matrix

Definition 2.4.6:An nxn matrix A is called nonsingular (or invertible) if there exists an
nxn matrix B such that
AB=BA-=I,.

The matrix B is called an inverse of A denoted by A™. If there exists no
such matrix B, then A is called singular (or noninvertible).
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Example 2.4.7: Let

1 2 3 -2
A= and B= .

1 3 -1 1
Since AB = BA =1, ,we conclude that B is the inverse of A and hence
that A is invertible..

Theorem 2.4.2 :If a matrix is invertible , then its inverse is unique.

Proof:Let B and C be inverses of A. Then
CA=AB=lI,.
Therefore,
C=Cl,=C(AB)=(CA)B=1,B=B
Remark : Since the inverse of amatrix if it exists is unique,We write the inverse of A by
Al Therefore, A= A*A=1,.

1 2 . 1 4_|a b
Example 2.4.8: Let A = 13 Tofind A, let A~ = c dl

Then we must have

AA*H{ H}

so that
a+2c b+2d
a+3c b+3d

For the above two matrices to be equal the corresponding components should be

equal. Hence

at2c=1 a+3c=0

b+2d =0 b+3d =1
Collecting terms

at2c=1 b+2d =0
a+3c=0 b+3d =1

Solving simultaneously
a=3,c=-1,b=-2,d=1
Therefore

ol

Activity 2.4.2 :

3 -2 1 2
By matrix multiplication show that [ 11 } is the inverse of L 3]

Theorem 2.4.3

1. If A is an invertible (nonsingular)matrix, then A™ is invertible (nonsingular) and
(AhH*T=A

2. If Ais an invertible (nonsingular)matrix, then (A" = (A™)",

3. If A and B are invertible (nonsingular) matrices, then AB
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invertible (nonsingular) and (AB)*=B*A™.
Proof

1. Let A be an invertible matrix . there exists a matrix B such that AB=BA=I,. B =A
Since B=A",B*= A implies that (A)* = A
2. (AYAD = (ATA) = 1'=1Tand (AHYAY) =(AAY) =1'=1
Therefore , (AY)™* = (A™)"
3. AB(B* A1)= A(BB™ )A'= Al A=A A= | Similarly
B*AYAB=B*(A* A)BB=B*IB=B'B= |
Therefore , (AB)* = B* A™

Remark: By repeated application the preceding theorem ,It can be shown that if
A1, ...A, are invertible matrices of the same order then
(AlAl .. .An)-l = An_l An.l-l ....... A2_1 Al-l

Procedure for finding the inverse of a matrix.

The procedure for computing the inverse of matrix A is as follows.

Stepl. Form the augmented matrix B = [A : |, ] obtained by adjoining the identity

matrix I, to the given matrix A.

Step2. By using elementary row operations on B ,Transform the matrix A in to reduced
row echelon form.

Stepa3.

a.lf the reduced row echelon form. of A is the identity matrix , A is invertible and its
inverse is the matrix to the right of the vertical bar..

b.If the reduced row echelon form. of A is not the identity matrix , A is not invertible.

1 2
Example 2.4.9 : Find the inverse of the matrix L 3}

Solution :
12
Let A=
3
12:10
Stepl.B=
13:01
12:10 12: 1 0
Step 2: B = B,>By+(-1)B
P (13 01j22()1(01:—11j

BB H(2)B,[ - O 3 72
Lot lo 1 -1 1
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3 -2
1 : -1
Step 3: Since the reduced row echelon form. of A is the identity matrix , A is invertible

. . {3 —2}
and its inverse is

1
Therefore (0 J is the reduced row echelon form of B.

-1 1
1 -1 2
Example 2.4.10 : Find the inverse of the matrix |0 1 -3
3 3 -1
Solution :
1 -1 2
LetA=|0 1 -3
3 3 -1
1 -1 2 1 00
Stepl.B={0 1 -3 : 01 O
3 3 -1 0 01
1 -1 2 1 00
Step2.B={0 1 -3 : 0 1 O] B3;—>B3+(-3)B;
3 3 -1 0 01
1 -1 2 : 1 00 1 -1 2 : 1 0 O
0 1 -3 : 0 1 OJ B;>Bs+(-6)B,j0 1 -3 : 0 1 O
0 6 -7 : -301 0O 0 11 : -3 -6 1

1 -1 2 : 1 0 0
839%1830 1 -3

0 1 0
00 1 7¥ Y X

1 -12: 1 0 0
B:2>B+(3)Bs|0 1 0 : _%1 _%1 %l

0 0 1: 7Y, Y M)
1 -10 M4 15 =

BiYBH2B[0 1 0 : ~%, U, ¥

00 1Y Y M)
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oo & % K4
Bi>Bi+(1)B2|0 1 0 : ‘%1 ‘%1 %1
00173 % K
Step 3 Since the reduced row echelon form. of A is the identity matrix , A is invertible
P U
and its inverse is _41 _%1 %1
-3 -e11 Y
M - M 8 -5 1
Hence A™ = _41 _%1 %1 :%1 -9 -7 3
2 M S e

Activity 2.4.3
Find the inverse of
(1 2
1. A=
10 3
1 2 0 4
0 310
2. A=
01 0 4
111 4

2.5 Rank of a matrix

Definition 2.5.1 :The rank of a matrix is the number of non zero rows the row echelon
form

of the matrix.

11
Example 2.5.1: Let A=| 0 1. Find the rank of A.
00
Solution:
Ais in row echelon form. A has two non zero rows. Hence the rank of A is 2.
Activity 2.5.1:
1 31
Let A=|0 1 2/|.Findtherank of A
0 01
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Activity 2.5.2:
2 31

Let A=|0 1 2|.Findtherank of A
01 2

Remark : If A is an mxn matrix , the the rank of A is less than or equal to the min(m,n)

2.6 System of Linear Equations and methods of solving.

System of linear equations

Consider the following m system of linear equations in n unknowns:
a; X, +a,X, +--+a, X, =b
Ay X, +8,,X, +o-+ 3, X, =D, *)
X, +8,,X, +---+a, X, =b,

Now define the following matrices:

a, 9, - 4 Xy b1
a a - a X b
e Y o O
aml am2 amn Xn bn

Hence linear system (*) above can be written in matrix form as

Ax =bh.
Note : If b is the zero matrix then the system is said to be homogeneous otherwise non
homogeneous.

The matrix A is called the coefficient matrix of the equations in (*), and the matrix

a; &, A, bl
a a o a b
g=|® fr T B T
a a a b

ml m2 mn m

Obtained by adjoining b to A, is called the augmented matrix of (*). Like inveses of a matrix
, the augmented matrix of (*) will be writtenas[A : b ].
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Example 2.6.1 :Consider the following system of three linear equations in two unknowns.
X -2y +z=12
-2x+ +z=5
a. Write in the form of AX =D
b.Write the augmented matrix B

Solution

a.The system can be written as.
X -2y+z=12
-2x+0y +z =5.

X
1 -21 12
A= X=1y b=
(—2 0 ]j [5}

Activity 2.6.1:Consider the following system of three linear equations in two unkowns.
3X1 + 2Xo +7X3 +4X4 =0
X1 -3X2-6X3+X4=3
8X; +X3- 3X4=2
a) Write in the form of AX =b
b)Write the augmented matrix B

Solving Systems of linear equations

Consider the following m system of linear equations in n unknowns:
A X FanX, +--+a, X, =b

1n*n

Ay X, +ayX, +o+ A, X, =D,

(*)
A X, +8,,X, +o-+a,, X, =b,
Our aim is now to solve the above system of linear equations
If by = b, = ....= b, = 0, the system is called homogeneous otherwise it is non

homogenous system.

A solution of the above equation (*) is an n — tuple that satisfies the system. The solution set S
is the family of all such n-tuples .Solving the system means describing the set S in some way

that enables us to tell easily whether a given n — tuple belongs to S or not.

Remark : A homogenous system always has a solution where x; =X, =.....=x, =0, which is

called a trivial solution.

Guassian elimination, named for the great Mathematician C.F.Guass , is the process of

reducing a matrix to row echelon form.
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Operations that leads to equivalent systems of equations

Each of the following operations performed on a system of linear equations produces an
equivalent system .

)} Interchange two equations

i) Multiply an equation by a non zero constant

iii) Add a multiple any equation to any other equation.

Given a system of m linear equations in n unknowns.Three questions arise

Q) Does the system have any solution
(i) If so, how many?
(ili)  What are the solutions?

The solution Set S of (*) is not changed to the standard form by these three operations
a. Two equations are interchanged
b. One equation is multiplied by anumber that is not 0.
c. One equation is changed by adding another one to it

The operations (a,b,c) have counterparts for matrices. Interchnging two linear equations is
equivalent to interchnging two rows of the matrix of the system. Multiplying an equation by a
number corresponds to multiplying the associated row of the matrix by the same number.
Finally adding one equation to another is equivalent to adding one row to another row.

Guassian — Jordan method for solving Systems of linear equations

Consider the following m system of linear equations in n unknowns:
a; X, +a,X, +--+a, X, =b

1n*n

2n*n

Ay X, + 85X, +o+ 3, X, =D,

., X, +8,,X, +---+a, X, =b,
To solve the System

Step 1. Write in the form of Ax = b.
Step2. Form the augmented matrix B= [A : b].

Step3. Transform the augmented matrix to reduced row echelon form by using elementary row
operations.
Step4. Compare the rank of A and the rank of B
a. If rank of A <rank of B, the system has no solution
b. If rank of A = rank of B, the system has a solution
(i) rank of A = rank of B = n, the system has exactly one solution.
(ii) rank of A = rank of B < n, the system has infinitely
many solutions.
Step 5. Use back substitution
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The above method is called Guass-Jordan elimination.
Example 2.6.2: Solve

X -2y+z =0
22X+ +z=-1
2X-y+z=2
Solution
1 -2 1 X 0
Stepl: A=|-2 0 1| X=|y| b=-1
2 -11 z 2
1 -21: 0
Step2:B=|-2 0 1 : -1
2 -11: 2
1 -21: 0 1 -2 1: 0
Step3:B=|-2 0 1 : -1|B,>B,+2B;|0 -4 3 : -1
2 -11: 2 2 -1 1 : 2
1 -2 1 0 1 -2 ;
Bs>BsH(-2B1|0 -4 3 : -1|B>"Y B0 1 -3 1
0O 3 -1: 2 0 :
1 -2 -2 1 . 0
By>Bs+(-3)By[0 1 — / y Bs> / 53 1 -y %
0 0 / / 0 O 1 1

Now B is changed in to row echelon form.
Step 4. The rank of A = 3 (The left hand of the vertical bar) and the rank of B = 3, the
system has a solution. Since
rank of A = rank of B = 3 = n, the system has exactly one solution.
Step 5. By Using back substitution

1 -2
—/ %
0 O
z:1,y+—Az:%:>y:1

z=1,y=1,x+-2y+z=0=>x=1
Hencex=1,y=1z=1
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Remark:The linear systems with at least one solution are called consistent, otherwise the
system is said to be inconsistent.A consistent system has either one solution or infinitely many
solutions.

Theorem 2.6.1 : A system of linear equations with fewer equations than variables must

have either an infinite number of solutions or no solution.( Such a system cannot have a

unique solution)

Proof : m<n . Rank A=r<min(m,n)=m<n

=rank A<n

= It has no unique solution
Note: In a consistent system rank A =r <n, n—r of the unknowns are assigned any
values whatever, the other r unknowns are uniquely determined.

Example 2.6.3 : Solve

2X +y +2z =3
X—-y+4z=7
X +3y =-1
Solution
2 2 X 3
Stepl:A=|3 -1 4| X=|y 7
1 0 z -1
2 2
Step2:B= |3 -1 4 : 7
1 3 0 : -1
2 1 2 1 3 0 : -1
Step3:B=|3 -1 4 : 7 |Bi3|3 -1 4 : 7
3 0 -1 2 1 2 : 3
1 3 0 : -1 1 3 0 : -1
B;>B3+(-2)B1|3 -1 4 : 7 | B> B,+(-3)B;|0 -10 4 : 10
0 -5 2 : 5 0 -5 2 : 5
1 3 0 : -1 1 3 0 : -1
B,2>B,+(-2)B3j0 0 0 : 0 B30 -5 2 : 5
0 -5 2 : 5 0O 0 0 : O
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13 0 : -1

Bﬁ—%Bzo 1 —% )
00 0 : O

Now B is changed in to row echelon form.
Step 4. The rank of A = 2 (The left hand of the vertical bar) and the rank of B = 2, the
system has a solution. Since
rank of A = rank of B < 3 =n, the system has infinitely many solutions.
Step 5. By Using back substitution
r=rank of A=2, n=3
n-r=23-2=1unknown will be assigned any value let us say t.
Letz=t

y + —%22-2 =vy+ —%t:-Z =y=-2+ 2t
X+3y= -1 =>x=-1+-3y=x=-1+3(-2+ %t):x:-7+ —%t
Hence the solution is x = -7 + —%t,y:-2+ %t,z:twhereteﬂ%

Example 2.6.4 : Solve

X-y+z =2
2x+y+z=1
3Xx+2z =5
Solution
1 -1 1 X
Stepl:A=|2 1 1| X=|y| b=
3 0 2 z
1 -1 1 2
Step2 : B= [2 1 1 1
3 0 2 :5
1 -11 2 1 -1 1 : 2
Step3:B=|2 1 1 1} B> Bs+(-3)B;|2 1 1 : 1
3 0 2 :5 0O 3 -1: -1
1 -1 1 : 2 1 -1 1 : 2
B,>B,+(-2)B;|0 3 -1 : -3|B3>B3+(-1)B,/0 3 -1 : -3
0 3 -1: -1 0O 0 0 : 2
1 -1 1 : 2 1 -1 1 = 2
B> 1Bl0 1 1 1B YBj0 1 -l 1
0 O 0o : 2 0 O 0o : 1
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Now B is changed in to row echelon form.

Step 4. The rank of A =2 (The left hand of the vertical bar) and the rank of B = 3, the system
has a solution. Since
rank of A < rank of B, the system has no solution

Activity 2.6.2
1. Solve
2X -y+z =3
X+y-3z=1
X +2y =2z =-11
2.. Solve
X-y+z =6
2X+y+3z=1
X +y -3z =1
3. . Solve
X+y-z =1
-y =5
2X-2y +z =3

Inverse of a matrix for solving Systems of linear equations

Suppose A is an nxn matrix. Our aim is now to solve the equation Ax =b which is a
system of n equations in n unknowns. Suppose that A is invertible . Then A™ exists and
we can multiply Ax =b by A™* on both sides.We obtain

A'(Ax) = A'b
(A*A)x=A"b
Ix =A'b

x = A'b.

Moreover, x = Ab is clearly a solution to the given linear system. Thus if A is invertible
, the solution is unique .

Using the above property ,

Theorem 2.6.2. If A is an nxn matrix, the homogeneous system

Ax=0
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has a nontrivial solution if and only if A is noninvertible.

Example 2.6.5: Solve
X +2z =1
X+3z=-1

Solution
First write in the form of AX =b
1 2 X 1
A= , X= , b=
1 3 z -1
By using elementary row operations , we can find
Al = 3 -2
-1 1
X 3 -2|(1 5
= A'lb = =
z -1 1 (-1 -2
Hencex=5,z=-2.
Example 2.6.6 : Solve
X-y+2z =1

y-3z=2
3X+3y-z=0

Solution

First write in the form of AX=Db

1 -1 2 X 1
A=|0 1 -3[,X=|y|,b=]2
3 3 -1 z 0

By using elementary row operations , we can find

8 -5 1
1 _
A—%l—Q ~7 3
-3 -6 1
X 8 -5 1](1 —2
— Al — —
y—Ab—%l—Q ~7 3 2_%1—23
z ~3 -6 1]l0 ~15

Activity 2.6.3  Solve the following systems of linear equations using the inverse of a matrix.
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1. Solve
X—-y=2
2x+y=1

2. X +2y-z =-2
2X—-y+z=5
X+y+z=2

eXercises

1 -1

1 -1 0
lLetA=|2 3 andB:[ j
2 1 1
0 -1

Find a. AB.

b.A'

c.B!

d.B'A'

e. The rank of A
2. Consider the matrix

3 12
A=| 1 20
—2 7 4

is A a symmetric matrix?
1. Consider the matrix

2 1 1
A=|-1 -3 5
-2 6 1

Write A as a sum of symmetric and antisymmetric matrices..

4.Determine whether the matrices are in row or reduced row echelon forms.

1 2 00

1 200 1 56 2 0 010
A=|0 0 O 0,B=|0 O O OC=0 0 0 1
0100 0 00O 0 00O

0 00O

5. Find the inverse of the following matrices.

a.A=@ ‘4]
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b.A=

I\JOON
o N
N W O

B

c.A=|1 -2 3
13 -4 2
6.Find the rank of the matrix
2 3 1 -1
A=|1 -2 0 1
5 -3 1 2
7. Solve
2Xx+y+22=3
X-y+4z=7
4x+3y+62=5
8. Find for what values of o and 3 , the system
2Xx+4y + (a+3)z=2
X+3y+ z =2
(-20x+2y+ 3z=f
is consistent .
9. Solve
2X +6y +z = -1
3X+9y+2z=-1
-y+3z=4
10.Let A be a 3x5 matrix and B be a 5x5 matrix .What is the size of AB?

11. Let A and B square matrices of the same order which of the following is true?
A. (A+B)t=At+B"?
B. AB=0 = |A|=0or |B|=
C. AB=0 = |A|=0and |B| =
D. (AB)Y*=A"'B*
12.Solve
X +2y =2
3X+6y-z=8
X+2y +z2 =0
2x +5y -2z =9
13.a. List all possible forms of 2x 2 reduced row echelon forms.
b. List all possible forms of 3 x 3 reduced row echelon forms

1anf [3FP €AY (8 6 qiancd
c—d a-b 4 2

1 0 01
15. Verify that A = (O J and B = (1 0] are two symmetric matrices such that AB is
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Skew symmetric.
a 00

16.Let A=|{0 b 0 |wherea=0, b0 and c #0.Find the inverse of A.
0 0 c

5 -1
17.IfA'1:( ],findA
2 3

1 0 2 -11 2 2
18.Showthat A=|2 -1 3|istheinverseofB=|-4 0 1
4 1 8 6 -1 -1

1 2 0 )
19.Let A= . Find
3 -1 4

a. AA! b. At A
1 2 : 2 3
20.Let A = . Finda) A b) A
4 -3
1 3 . X
21.Let A= 4 . Find a non zero vector vector u = such that Au =3u
- y

1 2\ . N
22 Let A= .Find A
0 1

1 3 4
23.Find the inverseof A=| 3 -1 6
-1 5 1

DETERMINANTS

Determinant is a scalar associated with every square matrix .Their usefulness follows
from two of their properties. First they can be used to compute areas and volumes, and
secondly , that a zero determinant characterizes singular matrices. Computing areas and
volumes brings determinants in to the formulas for changing variables inmultiple
integrals .One of the most important uses of determinants within linear algebra is the
study of eigenvalues.

Determinants also occur in cramer’s rule for solving linear equations and can be used to
give a formula for the inverse of an invertible matrix. In the calculus of several variables ,
the Jacobians used in transforming a multiple integral uses determinant. This use arises
from the fact that determinant is the volume of the parallelpiped. Determinants are also
useful in various other subjects like physics , Astronomy and statistics
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Objectives:

After successful completion of this unit, you will be able to:

e Define determinant

Find the determinant of a square matrix by using the
definition and its properties.

Find inverse of a square matrix using determinant

Solve systems of linear equation

Calculate area of a parallelogram

Calculate volume of a parallelepiped

3.1. Definition of determinants

Every square matrix A= [aij Jnxn; has a number associated to it is called its determinant.

In this section we will define the determinant of a square matrix inductively and derive
its properties .The determinant of a matrix A will be denoted by det A or |A|

Definition 3.1.1

i) Determinant of a 1x1 matrix

Let A = [a,,] is a 1x1 matrix, then det A=|A| = a,,
Example 3.1.1: Find the determinant of A = (-2)
Solution

detA=|Al =a,=-2

i) Determinant of a 2x2 matrix
a‘ll a12
aZl a22

a1 1 a‘lZ

Let A :{ } then det A = = a; a,, —a;,a,,

a21 22

2 4
Example 3.1.2 : Find the determinant of A where A = {0 6}

Solution
det A=|A| = det A=2(6)-4(0) =12
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Example 3.1.3
‘x

6
=4

Find x if
2 X

Solution:
X 6

2 X

=4 =x*-12=4 =x’=16 = x=4orx=-4

Activity 3.1.1
1

1) If A:{
4

B ﬂ then find det A.

X 2
2) Find x if =4

2x 3
iii) The determinant of an nxn matrix

The determinant of an nxn matrix can be computed in terms of (n-1) x (n-1) determinants
.This expansion allows us to give a recursive definition of the determinant function.
Let A be an nxn matrix.and let A; denote the (n-1)x(n-1) matrix obtained by crossing

out the i" row and the j™ column of A.

a; 4, -
a,, a a n o
detA=|A=7 7% 2= (=)™ aij | Aij| (1<i<n)
. . j=]_
a‘nl anZ ann
is called expansion along the i row.
1 0 -1
Example 3.1.4 : Find the determinant of the matrix A=|3 4 2
2 1 5

Solution

n

DD ey [ Al (1<i<n)
Leti=1 , i(_l)i*'jaij | AlJ |

= (1) agg|Aga| +(-1) P aggl Aggl + (-1)Pags|Ads|

4 2
A11: 1 5 ,|A11|: 18

90
Addis Ababa University , CNCS



Det A = (-1)1+1 a11)Aq| +(-1)1+2 aio]An| + (-1)1+33.13|A13|
= a11|A11] - aro|A1z| + a13/A13|
= 1.18 - 0.1 +(-1)(-5) = 23|

Therefore det A = 23.

Hence we can write the above as

detA — all a22 a23 ~a, a‘21 a23 s a21 a‘22
32 a33 a‘Sl a33 a‘31 a32
Activity 3.1.2
2 -1 4
Find the determinantof A=|-1 4 3
7 1 -1
-1 -2 0 1
. -2 0
Example 3.1.5: -Calculate the determinant 1 3
0o -1 1 3

Solution

Det A= Z(—l)”jaij [Ajj| (1<i<n)
j=L

Let us expand along the second row

Det A = Z( D™ aij | Ajj | = Z( D*a, | A, |
=(- 1)2+1 a21|A21| +(-1)** a22|A22| +( 1)%%a|As| + (-1)°aze| Azd|

-1.0|A21| +1|A22| - l.(-2)|A23| + 0|A24|
|Azz| + 2|Azs|
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Therefore det A = |Ay| + 2|As3]

-1 0 1
Ap=3 -1 -3|=3
0O 1 3
-1 -2 1
Apx=3 1 -3|=15
0 -1 3

det A = |A22| + 2|A23|
=3+2(15) =33
As we can see from the above examples it is a little lengthy to calculate the determinant

of a matrix. Next we start some properties which we can help us in calculating the
determinant of a square matrix quickly.

3.2 Properties of determinants

Let Abean mxn matrix

Let A= (Ay, Az, As, ... A, Aist, .., An) .
OrA=(A A, ..,'A ...,"A) LetA; bethei™ row of the matrix A and ‘A, be the j"
column of the matrix A

The following properties are true

Let A and B be square matrices of order n.

1. detl=1
Example 3.2.1
1 000
01 00
Letl= , detl=1
0 01O
0 0 0 1

2 . det AB = (det A) (det B)
Example 3.2.2

4 2 3 2
Let A= JJA]= 18 andB = ,B|= 11
1 5 2 5
4 2)\(3 2 16 18
AB = =
1 5/{2 5 13 27
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Det AB = 432 — 234 = 198 = |A|B|
Using 2, one can show that det A* = (det A) ¥ where k is a natural number

Activity 3.2.1
Give an example where det (A + B) = det A + det B

3. If Ais invertible, then det A = S

det A
Example 3.2.3

Ty

— -l —
A= 18 , |At|= Yo

Example 3.2.4

4 -2 ~12 6
A = ,-3A =
(1 5) [—3 —15]

|A|=22 , |-3A] =198 = (-3)2(22)

2. det A' =det A

Example 3.2.5

s [j _52) o (—42 3

IA|=22, |Al=22

3. The determinant Vanishes if every element of some row (or column) is 0
a..det (Aq, Az,..., A, ..., Ay) =0 if Aj=(0,0,0,...,0)

b.det (A %A, .., 'A ., "A)=0if'A=|0

Example 3.2.6:
1 7 8 3
6 -7 2 -1
Let A= JA|=0.
0O 0 0 O
2 11 16 13
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108 3
6 0 2 -1

Let A = . |A|=0
90 5 6
2 0 16 13

4. The determinant vanishes if two rows (or columns) are equal or it one row (or
column) is a scalar multiple of the other.
a) I) det (Al, Ao,..., A, ...,Ak,...,An)=0 ifAi:Ak i=k
i) det (A A LA LKA LLTA) =0 iFIASRA ik
Example 3.2.7:

-1 2 3 5
6 -7 2 -1
Let A= .|A|=0.
-1 2 3 5
2 11 16 13
( the first row is equal the third row)
1 3 8 3
6 -1 2 -1
Let A= . |A|=0
9 6 5 6
2 13 16 13
b) )} det (A, Az,...,Ai, e Ak ..., AN) =0 if_Ai:OCAk
i) det(CA A LA LKA LL"A) =0 ifTA = o (FA)
Example 3.2.8
1 -2 -1 3
2 -1 -4 -1 . : : .
Let A= 3 6 -3 9| |A| =0 (the third row is equal to 3 times the first row)
-3 13 6 13
3 -2 3
2 -1 -4 -1 _ : . :
Let A= o 6 0 6| |A| =0 ( the third column is equal to -2 times the first
-3 13 6 13
column)

7. Interchanging two rows (or columns) multiplies the determinant by -1
a. det (Ag, ..., Air A, Aisty oo A1, Ak, Akt - AN)
= - det (Al,' oy AL, Ax, Aty ooy Ak—l,Ai , A1 ey An)
b. det (A,..., A A, . A KA KA LA)
=-det (A ..., A KA A L KIATA KA LA

Example 3.2.9
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-1 0 1
LetA=| 3 -1 -3|.|A|=3.

o 1 3
o 1 3
Suppose B=| 3 -1 -3|.detB =-3(Bisobtained by interchanging the first row
-1 0 1

and the third row of the matrix A
Example3.2.10

-1 -2 1
A= 3 1 -3|.Then A=15
0 -1 3
1 -2 1
LetB=(-3 1 3|.Then |B|=-15 (B isobtained by interchanging the first column
3 -1 0

and the third column of the matrix A)

8. a. det (ApAg, ..., KA, ..., Ay) =k det (ALAy, A, ..., Ay)
b. det (A %A, ... k'A, ..., "A)=kdet (1A %A,.. A .."A)
Example 3.2.11

-1 -2 1
LetA=| 3 1 -3|. |A|=15
0 -1 3
-2 -4 2
a.lfB=| 3 1 -3|.then |B|=2x15=230
0 -1 3

( B is obtained by multiplying the first row the matrix A by 2.)

-1 2 1
b.1fB=| 3 -1 —3] then |B|=-1x15=-15
0 1 3

( B is obtained by multiplying the second column of the matrix A by -1)

0. a. det (Ag, Az At Ai+ AL, A, A
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= det (A1, Ag.... Aig, A Ais, -, Ag)+det (AL A . Avs, AL AL, An)
b. det (A, 2A, . 7AL A HAL A L TA)
=det CAZA, VAL A TA L TA)+det (CACA, A ATL AL TA)
Example 3.2.12

12t gt
2 4 2 3 |2

‘1 2‘ ‘1 2‘ ‘1 2‘
: = +

2 4 |2 3 10 1

10.If B is obtained from A by adding the elements of i™ row
(column) a scalar multiple of the corresponding elements of
another row (or column), then det(A) = det(B) i.e
b) det (Al, Az, . Ai.l,Ai, Ai+1y..., An)
= det gAl' Az, ..,_Ai-1_1 At ocAy, Ait1..., An)
c) det (‘A ‘A, PATA AL LLTA) =
det (A, 2A .. A A + oA TA, L A)

Example 3.2.13

Let
1 -1 2
A=|-2 1 -1
o 1 2
1 -1 2
Det A =det Bwhere B=|0 -1 3| (Because B is obtained from A by adding two times
0 1 2
the first row of A to its second row.)
1 -1 2
Det B = det C where C=|0 1 —3]| (Because C is obtained from B by adding one
0 0 5

time the second row of B to its third row.)
From the above
DetA=detB=detC
11. If Ais a triangular matrix, then det A = aj1a2.. am

Example 3.2.14 : Find the determinant of A where
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1 -1 2
A=|-2 1 -1

o 1 2
Solution
1 -1 2 1 -1 2 1 -1 2
det | -2 1 —-1|=det|0 -1 3|=det|j0 1 -3|=5
o 1 2 0 1 2 0 0 5
Therefore det A =5
Activity 3.2.2
Find the determinant of
100 123 123
aA=|040 b.A=|025 c. A={ 045
006 006 006
Activity 3.2.3
Show that
0 31 7
det 034 6 =102
2 59 -7
0 0 2 5

3.3. Adjoint and inverse of a matrix.

Definition 3.3.1: - Let A = [aijJ be an nxn matrix. Let A be the (n-1) x (n-1) matrix

which is obtained by deleting the i™ row and the j™ column of A. The determinant det
(Ay) is called the_minor of a;;. The cofactor Al;; of aj; is defined as

A= (-1)" det(a,) (l<i<n,1<j<n)
Remark : Ajjisan (n-1) x (n-1) matrix
1 -2 1
Example 3.3.1:-Let A=| -3 1 3
3 -1 0
Then Anz( 11 2] o Al=(-1)M detAy;= detAy= 3
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-2 1
A 1:( 1 OJ : Abyi=(-1)""" detAy= (-1) detAxy=1

1 1

As 2:( 5 3} : Alyo=(-1)*"? detAs o= (-1) detAz = -6

Definition 3.3.2: - Let A= [aijJ be an nxn matrix. The nxn matrix adj A, called the
adjoint of A, is the transpose of the matrix whose (i, j)™ element is the cofactor Al i

ofai,-.
Thus
Ay Ay o Al
. ) ) Al Al oAl
AdjA= (Al Thatis adja=|"" 72 T A7
Alln A|2n Alnn

1
Example3.3.2: - Let A :( 3

1
3] . Compute adj A

Solution:

The cofactor of A are Al of a; where 1< i,j<2
A11:(3) : A|11:(-1)1+1 detA;= detA;1= 3

A, 1:(1) . A|21:(-1)2+1 detA21= (-1)detA21= -1

A1 =(-3) : Alp=(-1)"*? detAs,= (-1)detA,= 3

A, 2:(1) . A|22:(-1)2+2 detA22: detA2= 1

adj A =(Aly)'= A A =(° 3
: A, Ay -1 1
Activity 3.3.1

2 1 .
LetA:[1 5].Compute adj A

2 -1 4
Example 3.3.3:-LetA={-1 4 3 |. Compute adj A.
7 1 -1

Solution: The cofactor of A are Al of a; where 1< ij< 3

4 3

1 4
A2 1:( 1 ]J : A|21:(-1)2+1 detA21= ('1) detA21= 3
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~1 4
Az 1= [ J . AI3 1:(-1)3+1 detA3 1= detA3 1=-19

I
w

-1 3
A= ( 1) D Alp=(-1)? detAr,=(-1) detA= 20

2 4
A o= [7 :J . A|22:(-1)2+2 detAz,= detAz=- 30
_ 2 4 . | — 3+2 — -
Az o= 13 : Alz 2—(-1) detA3 2= (-1) dEtAS 2=-10

-1 4
Ags= ( 1] : Als=(-1)'* detAss= detAz= -29

2 -1
j o Alg=(-1)*" detAss= (-1) detAxg= -9

2 -1
1 4} . A|33:(-1)3+3 detA3 3= detA33= 7

A Ay Aly -7 3 -19
adj A=| A, Apn Ay =] 20 -30 -10
Az Al Alg -29 -9 7

adjA

Theorem 3.3.1: If A is an nxn matrix and det A= 0, then A™ = ot A
e

Example 3.3.4 : Consider the Preceding examples

2 1
1 LetA= .

Solution
. 5 -
ade:( j,detA:9
-1 2
53
det A 9 —% @

GOl ZFG Y
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2 -1 4
A=|-1 4 3|, thendet A=-136
7 1 -1

Cadia |l 2P Tss e s
'=ng 20 -30 -10|= —2%36 —3%36 -1%36

-29 -9 7 29 9 -7
436 436 436
Activity 3.3.2

Using Adjoint find the inverse of

A=
2 -
Theorem 3.3.2: A matrix A is invertible if and only if det(A) # 0.
Proof: (=) Suppose A is invertible, then AA™ = |
det AA™ = det 1=1
det A detA™ =1 .Since the pproduct of two numbers is one , each of the numbers
must be different from 0.Hence det A #0

adj A

< Suppose det (A) # 0, then A= , S0 A is invertible .

Corollary 3.3.3: If A'is an invertible matrix , then the equation A x = b has exactly
one

solution
Proof: Suppose that A is invertible, then A™ exists
AX =b
At (AX)=A"b
A*(AX)=A"p
X=A'"
Hence the system has exactly one solution.

3.4. Cramer’s rule for solving systems of linear equations.

The name cramer’s rule is applied to a group of formulas giving solutions of
systems of linear equations interms of determinants. To finish this section, we present a
method of solving a system of n equations in n unknowns called Cramer's rule . The
method is not used in practice. However it has a theoretical use as it reveals explicitly
how the solution depends on the coeffcients of the augmented matrix.

CRAMER’S RULE

Let
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a; X, +a,X, +--+a, X, =b

1nn

Ay X, + 85X, +---+8,,X, =h,

a X, +a,X, +---+a, X =b,

be a linear system of n equations in n unknowns and let A = [aijj be the coefficient
matrix so that we can write the above equation as AX = b, where

a; a5, . . . 4,
Ay Ay .. 3y, X b1
X b
A= , X = .2 y b = .2
Xn bl’]
aln a2n o ann

If det (A) = 0, then the system has the unique solution.. The solution is

a11 a'12 ' a‘1i -1 bl a‘1i+1 ' a1n
a21 a22 ' a2i—l b2 a2i+1 ' aZn

Bz | S . SRR

a'n1 an2 ' a‘ni—1 bn ' ' ann
is the determinant of the matrix obtained from A by replacing the i column of A by
b.

B,

) det A
To solve systems of linear equations by using determinants

X

Step 1.Write the system of linear equations in the form of AX =b
Step 2..Find the determinant of A.

. B . . . .
Step 3 : Find each x ; = m where B; is the determinant of the matrix obtained
3

from A by replacing the i column of A by b.
Example 3.4.1: -Solve the following systems of linear equation by Using Cramer’s rule
X—3y=2
2x+7y=11
Solution
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1
Stepl. A :(2

Step 2. det A =13.

Step3: X=——-=—
13 13

Therefore , x = 47 andy =—
13

Activity 3.4.1 -Solve the following systems of linear equation by Using Cramer’s rule

3X+y=5
X-4y =3

7
13

Example 3.4.2: Solve the following systems of linear equation by Using Cramer’s rule.

X, — X, +2X; =1
—2X + X, =X, =4
X, +2X; =3

Solution

1 -1 2 X, 1

Stepl. A=|-2 1

0o 1 2 X3 -3
Step 2. det A=5.
1 -1 2 1 1 2
4 1 - -2 4 -
-3 1 2 2 0 -3 2
Step3. Xx;=——— =" | Xp=————
det A 5 det A
1 -1 1
-2 1 4
o 1 -3 -3
X3 = =
det A 5
Therefore , x; = 22 X2 -2 and x3:_—3
5 5 5
Activity 3.4.2
Solve the following systems of linear equation by Using Cramer’s rule
2x+3y-z=1
X+2y-z=4
-2X -y +2z =-3
Activity 3.4.3

-1|, X=X, |,b=| 4
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Solve the following systems of linear equation by Using Cramer’s rule
2X+y+ 2=6
3X+2y-2z2=-2
X+y+2z=4

3.5 Determinant : Cross product , Area and volume.

Cross product

Definition 3.5.1 Let A = (a; , a2 ,az).and B = (b1 , bz ,bs ).be two vectors in three
dimensional space . We define
AXxXB= i(a2b3 - bgaz ) —j(a1b3 - agbl) + k(albz - azbl)
i j k
ThatisAxB=1|a, a, a,
b, b, b

Example 3.5.2: Let A=(1,0,2) and B =(1,2,4) Find
a)Ax B
b)B x A
Solution :
A=(10,2)=(a1,a2,83) anda;=1,a,=0, az=2
B = (1,2,4) = (bl , b2 ,bg) and b1: 1, b2 =2, b3 =4

]k I j kK
a)AxB=la, a, a;= {1 0 2/ =-4i-2j+2k
b, b, b [ 2 4
ik ik
b)BxA =b, b, b,/ =(1)]a, a, a, =(-1)(-4i-2j+2k)
a a, b b, b, b,
=4i +2j- 2k

From the above ,for any two vectors Aand B, AxB =-(BxA)

Example 3.5.3: Suppose A and B are parallel ,Show that AxB =0

Solution
If A and B are parallel , one is a scalar multiple of the other.
Let A =aB .Hence (8.1,3.2 ,a3 ):Ot(bl,bg,bg ):(Otbl ,Otbz, Otbg)
i j Kk [ j k
AxB=la, a, a;|=lab, ab, ab,| =0
b, b, by |b b, b

Activity 3.5.1
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Show that
lixi=jxj=kxk=0;
2.ixj=k, Jxk=i,kxi=]

Area of a parallelogram

|| AxB || isthe area of the parallelogram formed by the vectors A and B
Example 3.5.4 : LetP =(2,-1,3), Q =(5,8,2) and R = (0,-1,3).Find the area of
parallelogram .

PQ =(3,9,-1) PR =(-2,0,0)
ik
IPQxPR|=|3 9 -1=
-2 0 O
= 1(9.0-0.(-1))-(3.0 —(-1)(-2))+(3.0 ~(-2)9)k
=0i +2j+ 18k
Area of the parallelogram = /0% + 22 +18% =+/328 square units

Example 3.5.5:
Find the area of a triangle with adjacent vectors P= (2, 3, -1) and
Q=122
Solution:

i j k
PxQ=2 3 —1=(2(3)+2(1))i- (2(2)+1(1)j + (2(2)-1(3))k

1 2 2

= 8i -5j +k

Area of a triangle = %II PxQ| = %\/64+25+ =%\/%

Volume of a parallelpiped

The volume of the parallelpiped formed by the vectors A, B and C is |A.(B x C)|
|| B x C || = Area of the base of the paallelpiped
0 is the angle beeween Aand B x C

Example 3.5.6 : Find the volume of the parallelpiped formd by the vectors A = 3i+j-

k,
B =-i+2j + 4k and C = 2i-5j +3k

Solution
First letus find Bx C
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R T ¢
BxC=|-1 2 4] =i(2.3-4.(-5)) —j((-1).3-4.2)+( (-1)(-5) - 2.2) k
2 -5 3
=26j + 11j +1k
A.(BxC)=3.26+1.11+(-1)1 =88
Volume = |A.(B x C)|= 88| cubic units = 88 cubic units

Exercises

-1 0 1
l.LetA= 4 1 1
-2 -1 -1

Find a. det A

1 2 -1 3 0 O
2..LetA=|0 3 6 |andB=|5 -2 O

0 0 -1 1 4 -1
Find a.detA’

b. detAB
c.detB'A'
d.detA™
e. det(A") ™

1 -1 a
c 3

-1
2 2 5

3
3. . Suppose
pp 4

O W SN
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Find a.

=
|
RN
D 00 W DN

w N b~ P
N
13

RN R
N

w oW

o 0 © N

3
4. LetA= . Find adj A
2 1

X

matrix is invertible?
6. Let A be a 3x3 matrix and detA = -2 .Then
(a) det 4A
(b) detA™
(c) detA®
(d) det(adjA)

1
5..LetA= ()1( J In the set of real numbers , find all values of x for which the

7.Let A and B be square matrices of order n.. Show that det(AB)=det(BA).

8..Let A be an invertible matrix .Suppose det B = 4 .Find det(A'BA)
9..Let A be a square matrix such that A'=A™ .Then det A

1 -2 0 120
10. Given that | O 3 0|A|0 2 0] =5l whatis the determinant of A?
0 01 0 0 1

11..Solve
X-y+2z=1
2X+y+z=-1

X+y—z=-2 by Cramer’s rule.
12.1fA=(1,13),B=(1,-1,4) and C =(0,1,2) . Find the area of AABC.

13. Leta=2i+j+kand b=j+ 2k. The area of the parallelogram formed by the
vectors a and b.
l4.Leta=i+j+kand b=2i- j+2kand c=i- j- k
Find
a. The volume of the parallelepiped formed by the vectors a,b and ¢
b.The total surface area of the parallelepiped formed by the vectors
abandc.
15Show that for any invertible matrix nxn matrix A we have
det(adj(A)) = (det(A)"*

16.Show that for any invertible matrix nxn matrix A thematrix adj(A) is also invertible and

satisfies (adj(A)) * = adj(A™) .
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2 1 2
17.Let A= |1 1 1|.Without expanding the determinant ,find the value of a for which
a 2 3

det(A) = 0
12
18.Find the value of x for which || JZO
2 X+
12 1
19LetA=| 0 1 2
13 2
Find a. adj(A)
b. A adi(A)
c. At
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PART Il: CALCULUS

Introduction:

This module encompasses four chapters. These are Limits, Continuity, Derivatives,
Application of derivatives, Integrals and application of Integrals.
At the successful completion of these modules the students will be able to:

. Compute limits of various functions

. Check the continuity of functions

. Use the concept of limit to define derivative

. Compute derivatives of various functions

. Apply differential calculus to solve a real life problems.

. Use the concept of limits to define a definite integral

. Compute definite and indefinite integrals

. Apply Integral calculus to find area of regions bounded by two curves, compute

volume of solids of revolution, compute length of plane curves

. Compute displacement and work done by force

Chapter 1: Revision on limits, continuity and differentiation

Objectives:

At the successful completion of these modules the students will be able to:
. Compute limits of various functions;
. Check the continuity of functions
. Use the concept of limit to define derivative

. Compute derivatives of various functions

1.1 Limit definition and examples

Definition:

Let f be a function defined on an open interval containing a (except possibly at a) and L be a

real number. We say lim,_,, f(x) = L if and only if for all values of x sufficiently close to a,
but not necessarily equal to a, the corresponding values of f(x) becomes arbitrarily close to the
number L.




Remark: when we write lim f (x)= L, we imply two statements.

. The limit exists
. Thelimitis L

One-sided limits

Definition of left hand limit:

Let f be a function defined on an open interval containing a (except possibly at ) and L be a real
number. We say lim,_,,- f(x) = L if and only if for all values of x sufficiently close to a from
the left of x = a, but not necessarily equal to a, the corresponding values of f(x) becomes
arbitrarily close to the number L.

Definition of Right hand limit:

Let f be a function defined on an open interval containing a (except possibly at ) and L be a real
number. We say lim,._,,+ f(x) = L if and only if for all values of x sufficiently close to a from
the right of x = a, but not necessarily equal to a, the corresponding values of f(x) becomes
arbitrarily close to the number L.

Limit Theorems:
Suppose that ¢ is a constant and lim f (x) =L and limg(x)=M , where L and M are real

X—a

numbers. Then
lim[ f(x)+g(x)]=L+M  sum rule

X—a

lim[ f(x)-g(x)]=L-M Difference rule

X—a

lim[ cf (x)]=cL Constant multple rule

X—a

lim[ f(x)g(x)]=LM product rule

X—a

— if M0 Quotient rule
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Different types of Limits

a) Limit at infinity

Limit at infinity:

Definition 1: Let f be a function defined on some interval (a,0) . Then !(m f (X) =

Definition 2: Let f be a function defined on some interval (—o,a). Then lim f (x)=

.1
Examplel: prove that lim—=0

X—0 X

) 1
Example 2: prove that lim ——=0
Xamp prov x>0 X + 4

Definition: The line y = L is called a horizontal asymptote of the curve of
y = f(x) if either

limf (x)=L or lim f(x)=L

X—00 X—>—00

Definition: Let f be a function defined on some open interval that contains

the number a, except possibly at a itself. Then |XILT; f(x)=o0

Definition: Let f be a function defined on some open interval that contains the
number a, except possibly at a itself. Then lim f (x) = —0

X—a

Examplel: Verify that:

110
Addis Ababa University , CNCS



C) Infinite limits at infinity

Definition:
1. The statement ll_[n f (X) = %0 means that for any positive number M,

there exists a positive number N such that: f(x) > M whenever x > N

2. The statement !(l_fll f (X) = —% means that for any negative number M,

there exists a positive number N such that: f(x) < M whenever x > N

3. The statement lim f (X) =—o0 means that for every negative number M,
——0

there exists a negative number N such that: f(x) <M whenever x < N.

Example 1: Prove that

a) lImVx+1=o0 b) lim (4+x°)=—o0

X—00 X—>—0

Example 2: Cancellation technique

Find the following limit

X+ x=2
lim—
x>2 X+ 2
Solution: Since limx*+x—2=0 and limx-3=0
X—>—2 X——2

Direct substitution produces an indeterminate form 0/0.
In this case we rewrite the fraction by simplifying it

X2+ x-2 (X+2)(X—l)
X+2 X+ 2

24+x-2

Therefore lim = =lim(x-1)=-3.
x>-2  X4+2 x—>—2

=x-1 for x#2

Example 3: Rationalization Technique

Addis Ababa University , CNCS
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) . Ix+1-2
Find lim————
x—3 X—3
Solution: Since IirT?)lx/X+1—2=O and |irY31(x—3)=O

Direct substitution fails.
In this case we rewrite the fraction by rationalizing the numerator.

m—zzm—z(ﬁuj 1

= for x#3
X—3 X—3 \/x+1+2

- 2+\/x+1
Jx+1-2 1 1

: 1
:Ilm = =—,
X-3 32 44x+1 2+2 4

Therefore lim
X—3

Example 4: Cancellation technique applied to trigonometric functions.

Inntanx
Evaluate: -
x—=>0 SIN X
sin X
tan x sin X 1
Solution: — =CPSX= : =
sinx sinx (sinx)(cosx) cosx
) 1 1
Therefore Iimt"flﬂ: Iim—===1

x>0sinx x>0 COSX 1

The squeezing Theorem: If h(X) <f (X) =g (X) for all x in an open
interval containing a, except possibly at a itself and if

limh(x)=L=limg(x), then lim  (x)=L

X—a

Theorems: Two special trigonometric limits

1im SN _
0

0—0

5 limi=%Sf _ g

6—0
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- X
NIV

Fig.1
Proof: We prove the first limit and leave the proof of the second as an activity.

Suppose @ is an acute positive angle (measured in radians).
Figure 1 shows a circular section that is squeezed between AOAB and AOCD

We have:
sin@=h and tand= AB

Area of AOAB > area of sector OAC > area of AOCA
= 1OA.AB > 16? > 1OA.CD
2 2 2

tanezgzsme
2 2 2

Multiplying each expression by ﬁ produces

1 > i >1
cosd sin@
and taking reciprocals and reversing the inequalities yields
cosd < sing <1

0
sin(—¢) sing
Sincecos @ = cos(—6) and (0 ) =, e conclude that this inequality is valid
. . T T

for all non zero @ in the open interval (_E’Ej
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Since limcos@=1 and liml=1
6—-0 6—-0

We can apply the Squeeze Theorem to conclude that

lim39 _q
60 @
Continuity

In mathematics the term continuous has much the same meaning as it does in our

everyday usage.
To say that a function is continuous at x = a means that there is no interruption in the
graph of f at x = a .That is its graph is unbroken at a, there are no holes, jumps or gaps.

Definition of continuity

Continuity at a point: A function f is said to be continuous at a if the following
three conditions are meet.

1. f (a) is defined ( a is in the domain of f)
2. !(l_f)T; f (X) exists

3.limf(x)=f(a)

X—a

Definition:
A function f is said to be continuous on an open interval (a,b) if it is continuous at
each point in the interval.

Remark: A function f is said to be discontinuous at a if f is defined on an open interval
containing a (except possibly at a) and f is not continuous at a.
Discontinuities fall in to two categories: removable and non removable (essential)

discontinuity.

A discontinuity at x = a is called removable if f can be made continuous by
appropriately defining (re-defining) f at x = a, otherwise it is said to be essential
discontinuity.

The discontinuity is removable if the limit of the function exists at that point.

Examplel: Find the point of discontinuity of the following functions and determine
whether the discontinuity is removable or essential.
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2 _y_ 1-x% if x<0
X ZX=2 it ye2

a. f(x)=9 x-2 b. g(x)=<-1 if x=0
1 if x=2 2+x if x>0
Solution:
a. i. f(2)=1 is defined
2 _y— ~2)(x+1
i tim £ (x)=tim X X2 i 220y
X—2 x>2  X—2 X—»2 X—2 X—2

it But lim f (x) =3#1= 1 (2)

Therefore f is discontinuous at x = 2.

f to be continuous on the entire real line we can redefine f (2) equal to

the lim f (x)
X—2
Hence the discontinuity at x = 2 is removable.
b.i. g (0) =-1is defined
i, i = lim(1-x*)=1 i =i =
i fimo(=fim{i=) =Lang lim o(x)= im (2+x)=2

= limg(x) does not exist
x—0

Thus g is discontinuous at x = 0, the discontinuity at x = 0 is essential because it is

not possible to redefine g (0) to make it continuous at 0.

or equal to x.

Definition: The greatest integer function f (x)=[x] is the greatest integer less

Example 2: show that the greatest integer function f (x)=[x] is discontinuous at

all of the integers
lim f (x)=lim[x]=n—-1and lim f(x)=lim[x]=n

X—n~ x—n~ x—n* x—n*
= lim f (x) = lim[x] does not exist.
X—n X—n

Therefore f(Xx)=[x] is discontinuous and the discontinuity is essential
Since lim[x] does not exist.

Addis Ababa University , CNCS
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One- Sided continuity

Definition: A function f is continuous from
i. the right at a if |ifl] f (X)= f (a) and
X—>

i the leftat aif lim f (x)=f(a)

1+3x%  if x>-1
Examplel: Let f(x)= .
4-x if x<-1
Show that f is continuous from the right at -1 but discontinuous from the left at -1.

Solution: Let us compute the one sided limits:
lim f(x)=lim (1+3x*) =1+3(-1)* =4

x—>—1" x—>—1"
. T 3\ A (. 3
lim f(x)= lim (4-x*)=4-(-1)"=5

and f(-1) = 1+3(-1)* = 4

lim (x)=f(-1) and lim f (x)=5=4=f(-1)

Therefore, by definition f is continuous from the right at -1 but discontinuous from the
left at -1.

Example2: Show that f (x) =Jx—6 is continuous from the right at x = 6

Solution: lim f (x)= lim Jx-6=0= f(6)

x—>6" x—>6"

Therefore by definition f is continuous from the right at x = 6

Example 3: Show that f (x)=[x] is continuous from the right but not continuous
from the left at any integer n.

Solution: We have seen that f (x) =[x] is discontinuous at all integers
Now let us compute the one - sided limits

fim £(x)= fim[x]=n—Land fily £ ()= Jim{x] =n

But f(n)=[n]=n

Hence we have XIIT f(x)= XILT [X]=n=1(n)
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Therefore by definition, f is continuous from the right but not continuous from
the left at any integer n.

Continuity on a closed interval

Definition: A function f is continuous on the closed interval [a,b] if it is

1. continuous on the open interval (a,b)

2. lim f(x)="f(a) and lim f (x)=f(b)

x—a’ x—b~

54+x if-1<x<2

Example: Discuss the continuity of g(X)z{X2 Lif 2<x<3
— <X=

Solution: We know that the polynomial function given by 5 - x and x* -1 are
continuous for all real x.

To conclude that g is continuous on the entire interval [-1,3], we need only check the

behavior of g when x = 2.
By taking the one sided limits when x = 2, we see that

limg(x)=lim(5+x)=7 and

X—2" X—2"

H N H 2 — 2 —
fim 9= fim (x* -1)=(2* 1) =3
fimg(x)=3»7=limg(x)

Therefore g is not continuous at x = 2.
. x> —c?if x<4 _
Example2: Find the constant ¢ that makes f (x)= ) continuous on the
cx+20 if x>4

entire real number.

Solution: F to be continuous on(—o, %), it should be continuous at x = 4

That is:
i T =fim 109
. T 2_ 2\ _1a6_c2 I i _
:!Lrljf(x)—lerﬂ(x c) 16—c¢ XIlﬁr‘rgf(x) XILT(CXJrZO) 4¢ + 20
2

=16-c " =4c+20
=’ +4c+4=0=(c+2) =0=>c=-2
Therefore the value of ¢ that makes f continuous on the entire real line is c= -2.

Theorem: If f and g are continuous at a and c is a constant then the following
functions are also continuous at a.

1. f+g 2. f — g 3.cf 4. fg 5. % ifg(a)=0




Each of the five parts of the theorem follows from the corresponding limit laws

Proof of 4:
Since f and g are continuous at a, we have lim f (x)=f(a) and limg(x)=g(a)

Then len; fg(x):lxirral f (x).lxirr;g(x): f(a).g(a)=fg(a)
Therefore fg is continuous at a.

Remark:
The following functions are continuous at every number in their domain.

Polynomial functions rational functions root functions
Trigonometric functions exponential functions logarithmic functions

Theorem: If £ is continuous at b and limg(x)=b, then lim f (g(x))=f(b)

X—a

In other words,

lim f (g(x))=f (limg(x))= f (b)

X—a X—a

1.2 The Intermediate Value Theorem (IVT)

The Intermediate Value Theorem (IVT)

If £ is continuous on [a,b] , and k is any number between f(a) and f(b) , then

there is at least one number c in (&,b)such that f(c) = k.

Remark:
1. A discontinuous function might not possess the IVT property

2. The Intermediate VValue Theorem can be used to locate the zeros of a function
that is continuous on a closed interval.

Corollary: If f is continuous on [a,b] and f(a) and f(b) have opposite signs,

then f has at least one zero on[a,b]
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Examplel: Find all values of ¢ guaranteed by the IVT for the function

X%+ X

f(x)= on {24} ,where f(c)=6

x-1

Solution: The domain of f is all real number except 1.

. . . . 5
As f is a rational function it is continuous on {5 , 4} )
=6

We want to find the values of ¢ such that f (c)
Then by the IVT, we have

¢’ +c

f(c)=§=6

—=c’+c=6c—6=c?>-5c+6=0
=(c-3)(c-2)=0=c=3 or c=2

. |5
Therefore the values of ¢ in [E , 4} guaranteed by the IVT are 2and 3.

Example 2: Use the Intermediate value Theorem to show that f (X) =x*+2x-1

has a root on [0,1]

Solution: Since f (x) is a polynomial function it is continuous on [0,1] .

And f (0) =-1< 0 and f(1) = 1°*2(1) -1=3-1=2>0

Therefore by the corollary of IVT, f has at least one root on[0,1].

EXERCISE ON LIMITS AND CONTINUITY

1. Show by means of examples that Iirg[ f (x)+g(x)] may exist even though neither

!(m f (X) nor |XI9rT;1 g (X)exists.

2. Evaluate the following limits if they exist.

_ 2+h) -8
a.Iiml—X b. Iim&

x—1 f5_ X2 _2 h—0

Addis Ababa University , CNCS
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1 1

2 —
c. lim2+tXx_2 d. lim :—9
x->0 X x~>-3 2t° + 7t +3

3.a. If1< f(x)<x*+2x+2, forall x find lim f (x)

x—>-1
1-cosx
X

0

b. Show that legg

) . 1
c. Find limx? cos=
x—0 X

4. a) Find the numbers at which f is discontinuous. At which of these numbers is f
continuous from the right, from the left or neither?

X+1 if x<1
a F(X)= % if 1<x<3
x-3 ifx=3
b. Find the values of k so that f is continuous on(—,%) , where
3-x if x=9
f(x)=1 9-x
k if x=9

c. Use continuity to evaluate limsin(x+sinx)

X—>7r

5. Use the Intermediate VValue Theorem to show that the following functions has at least
one root in the indicated intervals

a. f(x)=x*+5x+3, [-10] b.e™*=x [01]] c. x*+x-3=0, (1,2)

1.3 Differentiation

Here we briefly deals about geometric meaning of the derivatives, Rules of
differentiation, derivative of algebraic and transcendental functions, the Chain Rule,
implicit differentiation and higher order derivatives.

Objectives: By the completion of this chapter the students will be able to:
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. Give the geometric meaning of derivative of a function
. Define the derivative of a function at a point and at an arbitrary point in
its domain
. Find the slope of a tangent line to any curve at a given point
. Use techniques of differentiation to find the derivative of constant times
a function, a sum, a product, of two or more differentiable functions and quotient of
two differentiable functions.
. Apply the Chain Rule to find derivatives of composite functions

. Find derivatives of derivatives (higher order) derivatives.

Geometric meaning of derivative of a function

Tangent lines

Definition: The tangent line to the curve y=f (x) at the point p (a, f (a)) is the line
through p with slope

m= IimM provided that this limit exists.

X—a X_ a
And the equation of the tangent line to the given curve at p is given by

y—f(a)=m(x-a).

Q(x.f(x))

y =f(x)
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Examplel: Find the slope and the equation of the tangent line to the curve of y = x* +1 at
the point (-1, 2).

Solution: Here we have given a = -1 and f(x) = x? +1. Then the slope to the curve at (-1,2)
f(x)-f(1) . x*+1-2 . x*-1 (x=1)(x+1)

=lim = lim = lim = lim(x-1)=-2
x—>-1 X—(—l) x>-1  X+1 x>-1 X+1 x—>-1 X+1 x—>-1

Then using slope point form of equation of a line, we have y -2 =-2(x-(-1)) = -2x-2

There is another expression for the slope of a tangent line that is sometimes easier to use.
Leth=x-a. Thenx=a+h

So the slope of the secant line PQ of fig.3 is:

m= lim f(a+hg—f(a) ------- (as x—>a, h—0)

Definition of Derivative of a Function at a point

Therefore we have the following alternative definition of derivative.

Definition: The derivative of a function f at a number a, denoted by f'(a) is

(1) if this limit exists.

If wewritex = a + h,thenh = x — aand h—>0 iff x—>a

Example 1: Use the definition of derivative to find f'(2), where f (x)=x*—x

Solution: By definition, we have

XZ—X—(ZZ—Z) X2—X—2

f’(2)=|imM:Iim

=lim
x—>2 X—2 x—2 X—2 x—2 X—2
_ |imw —lim(x+1) =3
X—>2 X—2 xX—>2

Therefore, f'(2)=3
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Example 2: Use the definition of derivative to find f'(~1) where, f(x)=x"+1
Solution: By definition, we have

— _ 3 _ 1 2 1
f’(—1):|imM:|imX+—lO:"m(XJr ) (< = x+1)
x—-1 X—(—l) x>-1  X+1 x——1 X+1

2_
(L1)- X'Lnj'l(x+1)g(x+1 x+1) _ le(xz —x+1)

3

The Derivative as a function

Definition: Let y = f(x) be a function. The derivative of f is the function whose value at x
is the limit
f(x + h) = f(x)

provided this limit exists.

If this limit exists for each x in an open interval I, then we say that f is differentiable on I.

Note: Given any number x for which this limit exists, we assign to x the number f'(x) .
So we regard f' as a new function, called the derivative of f at x.

Notation:

In addition to f'(x), read “f prime of x”, other notations are used to denote the
derivative of y = f(x). The most common are:

£(x), % Y, %(f(x)), D.(y)

. d . .
Remark: The notation d—z(/ read as the derivative of y with respect to x.

Using limit notation:
dy Ay f (x+Ax)— f ()

Y im2Y < lim = (x)
dx M AX A AX

1
Example 1: Let T (X)= N Then use the definition of derivative to find f'(x)
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1 1
Solution: f'(X)zLimf(x+hg f(x):LmM
R XTR
S N
T RN

VX —x+h (\/;er] X—x—h

NCER ) BT A e WP ey

=

i hdx/x+h

-1 -1
=lim

0 i (V) 2xdx J_

s (x)=-
%
Example 2: Let § (X) =X* =X . Then use the definition of derivative to find the

formula for g'(x)

Solution: by definition, we have:
g(x+h)—g(x)

[(x+ h)3 —(x+h)}—x3

g'(x) = lim h =lim h
. X +3x°h+3xh* +h® —=x—h-x3
=lim
h—0 h
h(3x*+3hx+h-1
=lim ( )=Iim(3x2+3hx=h—1)=3x2—1
h—0 h h—0
. 9'(x)=3x* -1

Definition: Let y = f(x) be a function and a be in the domain of f.
The right-hand derivative of f at x = a is the limit

F/(a)= lim f(a+h)—f(a) _ lim f(x)-f(a)

h—a* h x—a* X—a

and the left-hand derivative of f at x = a is the limit

!
The function f is differentiable at a if f— (a) + (a) and f differentiable on an
interval if the derivative exists for each point in that interval.




Example 3: Show that h(X) = |X| is not differentiable at 0.
Solution: If x >0, then |X| =X
so £ (0)= lim T¥)=FO) _ i X _jim1-1

x—0* X—0 x—=0" X x—0*
If x <0, then |X|=— X
£ (0)= tim LX)~ O _ i =X jim (C1)= -1
X—0" X—0 x—0" X Xx—0-

= the left and right hand side limits are not equal.

f(x)—f(0
This implies, f'(0)= Ii@% does not exist

Therefore, f is not differentiable at o.

Example 4: Assume that

2+0x  if x>1
f(x)=
() 1x+E if x<1
2 2

Show that f is differentiable at x =1, i.e., use the limit definition of the derivative to
compute (1),

Solution: The derivative at x=1 is

, _f1+M)-f(1)
FO)=Im—x

f(1+ Ax)—(2+«/i)

= lim
AX—0 AX
f(1+Ax)—3
= lim ( )
Ax—0 AX

Note that Az can be either positive or negative,

1+Ax>1 when Ax>0 and 1+Ax<l1lwhen Ax<O .
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Thus

2+x/1+Ax if Ax>0

f(1+Ax)=
( ) %(1+Ax)+§ if Ax<O

Further work requires the use of one-sided limits. First, the right-hand limit is

lim fA+Ax)— (1) _ lim 2+1+Ax—3
AXx—>0* AX Ax—>0* AX

\/1+ AX —1
AX

= lim

AXx—0"

_ lim V1+Ax—1 J1+Ax+1

Ax—0" AX J1+AX +1

—lim (1+Ax)—-1

X2 AX (a\/1+ AX +1)

. AX
= lim

S A (N Ax +1)

_1
>
The left-hand limit is
1 5
f(1+Ax)—3 S(A+ax)+2 -3
lim ( )-3_ lim 2 2
Ax—0~ AX Ax—0" AX
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1+1Ax+§—3
= lim 22 __2
Ax—0~ AX

Thus, both one-sided limits exist and are equal, so that f is differentiable at x =1 with

derivative equal to 5

Rules of differentiation

Theorem 2:1 Derivative of a constant function.

d

The derivative of a constant is zero, & (C) =0

Proof: Let f(x) = c.
f(x+h)—f(x)

Then f'(X) =lim

h—0 h
, . C—C

f(x)_lhllI)] h

f’(x)=Li_r)rgO

f'(x)=0
Example: Find the derivative of the following functions
Cf(X)=7/3 b. g(X)=—=
a f(xX)=xn 9(x) 7
Solution:
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a. f(x)=7z~3 forall real number x and hence it is a constant function.

d d
Therefore, — f (X) = &(72'\/5) =0

dx
—e
b. Again 9 (X) = % is a constant function.

ig(x):i __e :0
Hence--dx dx %/7

Theorem 2:2 The constant Multiple rule

If c is a constant and f is differentiable function, then

%(cf(x)):c%f(x)zc £(x)

Proof: Let (X) = cf (X) Then

, . g(x+h)—g(x
o/ (x)=tim ST =89
ron i CF (x+h)—cf (x)
g'(x)=lim .
g'(x)=c im f(x+hg— f(x)
g'(x)=c f'(x)
Therefore,
d
—(cf (x))=c f'(x
= (cf (x)=¢ F'(x)
Example: Find the derivative of the following functions.
a. f(x)=%x3 b.g(x):Z«/;
Solution:

By constant multiple rule, we have

d d(2 2
a4 f(x) :&(gxg’) :5(3x2) =2X%°
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0= e)-2{ )

Therefore, & _ 1
erefore dx(zﬁ) 7=

Theorem 2:3  Sum and difference rules

The derivative of the sum (or difference) of two differentiable functions is the sum (or
difference) of their derivatives.

. %[f (x)+9(x)]= d

d

i S (0-9(x)]

Proof: The proof directly follows from the limit laws of sum and difference.

[(f +g)(x+h)—(f +g(x))]
h

i. (f+g)(x)=Ilim

h—0

f(x+h)+g(x+h)—(f(x)+g(x))

=lim
h—0 h
i f(x+h)—f(x)+g(x+h)—g(x)
_hIIJg h
f h)—f h)-
:Ihirrg (x+ g (x)+|hmgg(x+ g 9(%) by limit Sum rule

Therefore, ( f +9)’(X)= f'(x)+9’(x) or

L1 (0+9(0]=2 1 (0+Lg(0=1'()+9'(x)
Since f(x) - g(x) = f(x) + - g(x) the proof of ii is similar to that of i.

Remark: The sum and difference rules can be extended to cover the derivative of
any finite number of functions

Let p(x)=a,x"+a, X" +———+a,x* +aX+a, beapolynomial. Then
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p'(x)=na,x"* +(n—-1)a,_ X" +———+2a,Xx+a, byusingsum rule

Example: Find the derivative of the following functions.
4
a. f(x)=x>-4x+5 b. g(x)=—x?+3x3—2x

Solution: by using sum and constant rule, we get
a. f'(x)=3x*—-4

b. g'(X):—gx3+3(3x2)—2

g’ (x)=—2x>+9x*> -2

Theorem 2:4 Product Rule:

The product of differentiable functions f and g is itself differentiable
Moreover the derivative of f.g is given by the first function times the derivative of the

second plus the second function times the derivative of the first.

(fg) (x)=f(x)g'(x)+f'(x)g(x)

Proof: (fg) (x)=1lim

h—0

fg(x+h)— fg(x)
h

_lim f(x+h)g(x+h)—f(x)g(x)

h—0 h

f(x+h)g(x+h)—f(x+h)g(x)+ f(x+h)g(x)—f(x)g(x)

=lim
h—0 h
='hi§g[f (x+h)g(x+h3_g(x)+g(x) f (x+hr2— f (x)}

=lim f (xh).lim

g(x+hg—g(x)+”mg(x).”gg f(x+hg— f (x)

(fg) (x)=f(x)g"(x)+g(x) f'(x)

Remark: The product rule can be extended to cover products involving more
than two terms.
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Example: Find the derivative of the following functions.
1 3

a. f(x) Z(F—FJ(X+5X3)

b. g(t)=(3t—2t*)(5+4t)

c. h(x)=(x* —x)(x* +1)(x* + x+1)

Solution: a. First re-write f(x) as follows
f(x)=(x?—-3x")(x+5x?)

f'(x)= (X*Z —3x’4)(x+5x3)’ +(x’2 —3x*4)(x+5x3)
£/(x)=(x?=3x*)(1+5(3x%)) +(-2x° —3(~4x*) )(x+5x°)

:(%—%j(1+15x2)+(—%+i—§j(x+5x3)

=(i2+15—i—£]+(—£—10+2+@j

NG x* x?

b. g'(t) = (3t—2t2)(5+4t) +(5+4t)(3t—2t2)
=(3t—2t*)(4)+(5+4t)(3—4t)
g’'(t)=—24t>+2t+15 C.
h'(x) =(x* —x)' (X +1)(% +x+1)+ (% =x)(x° +1)' (X + x+2)+ (x* = x)(x* +1)(x* +x+1)'
h'(x) :(2x—1)(x2 +1)(x2 +x+1)+(x2 —x)2x(x2 +x+1)+(x2 —x)(x2 +1)(2x+l)

Theorem 2:5: Quotient Rule
The quotient of two differentiable functions, f and g is itself differentiable at all values

of x for which g(x)=0.

Moreover, the derivative of — is given by the denominator times the derivative of the
g

numerator minus the numerator times the derivative of the denominator divided by the
square of the denominator.

Addis Ababa University , CNCS



Proof: Suppose f and g are differentiable at all values of x for which g(x) # 0.
Then by definition we have:

H'(X) . [ fer{ o

g h—0 h
f(x+h) f(x)
_im 9(x+h)  g(x)
h—0 h
i F(xh)g(x)— f(x)g(x+h)
0 g(x)g(x+h)
g e f6) gbern)ogk)
T o ey 4
= lim g(X) im f(X+h)_ f(X)_ im ( ) im g(X+h) g( ) )
T Gel e b gighrm) i
909) oy T oy
ooy " Gaer O W
Y 909100 £ (o)
[3) -
Example: Differentiate
1
1= 17 b. glt)= L
Solution:
132
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a. By using quotient Rule, we have

o B3 —x) — (2t —x)(1-3°)

!

(1—3x2)2
£1(x) = (1-3x? Jax 1) (2x2 — x) 6x)
(L-3x*)
oy —3xF+ax+1
)= (-3x?)

b. First rewrite the expression as follows:
3 _i -1 3t-1
g(t) = =

Tt+5 t(t+5) t?+5t

Then by using quotient Rule, we get

o't)= (t? +5t )3t —1)(22t 1 5t)
(t? +5t)

3(t? +5t)— (3t —1)(2t + 5)
(t? +5t)
g'(t): —3t2 +2t+5

(t? +5t)

Derivatives of Trigonometric function

Recall that, we have seen

. sinXx . cosx—-1
lim =21and lim =
X—>0 X x—0 X

0

In this section we will find the derivative of sine and cosine function.
Example 1: Let f(X) =Sin X.Then find f '(x) by using the definition of derivative.

f(x+h)—f(x)

Solution: '(X)= Lim
-0

_lim sin(x +h)—sin x
h—0
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sin x cosh+ sinh cos x —sin X

=lim

h—0 h
_lim sin x cosh—sinh x + sinh cos x
- h—0 h

=limsin xlim cos +limcos xlim sinh b duct Rul
 h0 h>0 h h->0 hoo | 0y Product Rule

=(sinx) 0+cosx.1

Li_r)fg) Sin X = sin X and lim cos x = cos X Since both are constants with respect to h
-

Therefore, T'(X)=cos X

d, .
&(sm X) = COS X

Similarly, it is easy to show that:

di(cos X) =—sinx
X

Example 2: Differentiate each of the following function.
a. f(x)=tanx b. g(x)=cscx

. . . sin x . . ,
Solution: &) First rewrite tanx = osx and then apply the quotient Rule to find f'(x).

cos xi(sin x)—(cos x)
f,(X): o 2
cos
_ COS X.C0S X —sin X(-sin x)
- cos’ x
_sin® x+cos? x
~ cos?x

1 2
=——— =sec’ X
cos” X

Hence, f'(x)=sec? x
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The Chain Rule:
If f and g are both differentiable and F = f o g is the composite function defined by

F(x)= f(g(x)).then F is differentiable and F'is given by the product

F'(x)=1(g(x))g'(x)

In Leibniz notation, if y = f(u)and u= g(x) are both differentiable function, then

dx  du dx

To prove the Chain rules consider that, if y = f(x)and X changes from
ato a+ Ax, we define the increment of y as:

Ay = f(a+Ax)- f(a)

Then by definition, we have

iim &Y _ jim 1@+ 80=1@) _ ¢
MXx—0 AX  Ax—0 AX

e defing & ™ %—f’(a) if Ax %0
we aetine X If Ax=0

0

Then &Y = ¢+ f'(a) for Ax =0
AX

= Ay = f'(a)Ax + & Ax
. H L Ay ' _ g A _Nn_
Since lim & = Alm)& —f'(a)=f'(a)- f'(@)=0=£(0),& becomes

a continuous function of AX.
Thus for a differentiable f we can write:

Ay = f'(a)AX+ & AX --mmmn- (1), where £é—0 as Ax—0 and ¢ is a continuous

function of AXx.
This property of differentiable function enables us to prove the Chain Rule.

Proof of the Chain Rule:
Suppose U = g(x) is differentiable ataand y = f (u)be differentiable at b = g(a).
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If AXis an increment in x and Auand Ay are the corresponding increments in u and vy,

then we can use equation (1) to write

Au = g'(a)Ax + £,Ax = (f'(b)+ &, )Au, where &, —0as AX—>0 ----- (2)
Similarly,
. AYf'(b)Au + &,Au = (f'(b)+ &, )Au, where &, —>0as AU —>0 - (3)

If we now substitute the expression for Au from equation (2) in to equation (3),
We get:
Ay = f'(b)Au +&,Au(g’(a)+ &, )AX

= % = f'(b)Au + ¢,Au(g’(a)+ &,)

As Ax — 0 equation 5 shows that Au — 0, so both &, >0and &, >0as AX—>0

Therefore,

d Ay ,
di = lim Ai = lim f (b)Au + £,Au(g’(a) + &,)

= f'(b)g'(a)= f'(g(a))g'(a)

Example 1: Evaluate the derivative of the following functions.
: 1
a. F(x)=sinx’ b. G(t) =Vt +t c. H(G):sm(tangj

Solution:

a. Let g(x)=x%,g'(x)=2x
and f(t)=smt f'(t)=cost

Since F(x)=sinx? = f(g(x)), then
F'(x)=f'(g(x))g'(x)

F'(x) =cosx®(2x)=2xcos x>
b. Ifweletg ( ) then g'(t)=2t +1

1
and ifwe let f(X)=+X ,then f'(X)=——
(x)=V (0=5=
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As G'(t)= —=—(2t+1)=

2Jt2— 2Jt7 +t

c. H (0) can be expressed as a composition of three functions as shown below.

g(x)=tanx,  g'(x)=sec’x
(t)=sint, f'(t)=cost

The power rule combined with the chain rule

If n is any real number and u = g(x) is differentiable, then

2 ()= nut Lor2 (o) =n(g(x) g(x)

dx

Example 2: Differentiate each of the following functions.

2
a y= [6_5)(] b. Y = e c. y = sin(cos(sec x))
X

Solution:

a. By using the power Rule together with the Chain Rule, we have

Q_i(6—5xj2 _2(6—5xji(6—5xj
dx dx\ x*-1 x?=1)dx\ x* -1
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:(6—5xj—5@2—ﬂ—246—5@

x? -1

(e -1f

Thus,

2 —
ﬂ _ (12_10X)5x 212x+5
dx x- =1

b. Using the Chain rule, we get

dy _i sec
EE_d@(e “)

= %% i(se03¢9) _ % sec30tan 30 - (36)
do do

ay _ 3e%°3? sec 3@ tan 360
do

c. By using the Chain Rule we have,

dy d .
d_i(’ = (sin(cos(sec x)))

= cos(cos(sec x))% (cos(sec x))

= cos(cos(sec x))(—sin(sec x))% Sec X

v —cos(cos(sec x))sin(sec x )sec x tan x

dx
The number e as a limit

The expression

_e"-1
lim

h—0

=1 means that for very small values of h

e"-1~h

e" ~1+h

e~ (1+ h)%
So,
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1
e= Lirrg(1+ h)n =2.71828...

Or, if we say that t=%(ash —07,t —>oo,)and

h—0",t —» —) .Hence we have

t—infty

t
e= lim (1+%) =2.71828...

Derivative of a logarithmic function

In this section, all logarithmic functions have base a. For convenience, I didn’t write this

base number

Let f(x) = log x, then
qon i F(x+h)—f(x)
f'(x)=lim .

h—0

o £(x)=lim log(x + h)—log(x)

h—0 h

& t(x)=lim log(x + h)—log(x)
h—0 h

< f/(x)=1lim log(x +h/x)

h—0

N
o f (x)_mﬁlog(x+h/x)

< £/(x)=limlog(x + h/ x)n

1
() — T h\n
< f'(x)=1lim Iog[1+ ;j
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o £(x)=lim=-log (1+hj“
X

h—0 ¥

1 . 1
< f'(x)=="lim Iog((1+t)tj (Letting t =2and as h—0,t —0)

X t=0

o £(x)= L 1im |og[(1+t)fj

X t=0
~1Ine 1

1
f'(x)==-log=—-— =~
< (X) X o9 x1lna xlna

Thus,
Important cases

Let u be a differentiable function of x. Then

d 1 d 1 du
“ (log, )= —— L log,u)=—— M
dx(oga) xIna dx(ogau) ulna dx

Example: Find the Following derivatives:

d d

—log x —(log.. x* +1
o 109 b. dx( g, X% +1)

d X+1

_|o A i 1-x
© dx 94()(2 +l) d dxln(1+x
Solution:

d 1
a. —logx=

dx xIn10

d 1 d
b. —(log. x* +1)=———— —(x* +1

dX( 9 X" +1) (x* +1)In3 dX( )

:;.ZX
(x2+1)ln3

¢ and d are left as an exercise for the students
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Derivatives of exponential functions

Let f(x)=e*. Then Find f'(X)

1
Note that Lirrg(1+ h)n = e, implies that for very small values of h,

(1+h)%ze

—1+h=e"=h=e"-1 (1)
Then

£1(x) = im f(x+h)—f(x)

, e el
f(x)le_rET=Ll_rEe Ll_rlg N by product Rule.

! H X Ia h X s X
f (X):L'E(}e 'le)ﬁ:e Aim1=e"since 1+h =e" = h=e" —1from 1 above

Therefore,

¢ )s

Now to find the derivative of f(x)=a*  for a >0, we can use the Chain rule.

We know that @* = €™ by properties of logarithmic function.
Then we have,

d X d na* d na)x
8 o) L) Lo

dx
_em 4 a(x)=a*.Ina
dx
Therefore,
i(ax):ax.lna
dx In general, if f is differentiable at x and a >0,
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then

%(af(x)): a'™Ina.f'(x)

Example: Evaluate

9 (o) b L ()~

a. dx de
Solution:
a. %(4sin3x): 4sin3x %(Sin 3X)
= 4""¥*(3cos 3x)
bdie(\/g) sec—0 :(\/E) Sec_e%(SGC— 9) :_(\/E) sec-0gac_ ) tan— 0

Implicit differentiations

The function that we have meet so far can be described by expressing one variable
explicitly in terms of another variable as in
y=vx>+X, y=xsinx, y= 1+X2.
1+x
Such equations are said to be define explicitly.

However, suppose y is a differentiable function of x, and instead of having a formula for
y in terms of x, we are given an equation such as

Because y does not appear alone on one side of the equation in (1), we say that the
equation define y implicitly in terms of x.

If it is very difficult to express y as a function of x explicitly, we use a procedure called
implicit differentiation.

Consider an equation involving x and y in which y is a differentiable function of x.

We can use the steps below to find % by using implicit differentiation.

1. Differentiate both sides of the equation with respect to x.
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dy
dx
all other terms are on the right side of the equation.

3. Factor j—i out of the terms on the left side of the equation.

2. Write the result so that all terms involving — are on the left side of the equation and

4. Solve for d_y
dx

. dy
not contain— .
dx

by dividing both sides of the equation by the left-hand factor that does

Example 1: Findj—i , Where x> +y® =4

Solution: Use implicit differentiation with respect to x.

Lheryr)=S )

dy

=X , provided that y # 0
dx y

Example 2: Find y' if x® + y3 = 6xy

Solution: using implicit differentiation, we have
d/ s 3 d

—x* + =—I|6

dx( y ) dx( xy)

d(3) 9 (2o gy S dy
= dx(x )+ dx(y )—6ydx(x)+6xdx
:>3x2+3y2ﬂ=6y+6xﬂ

dx dx

= 3y° Q—GX% =6y —3x°
dx dx

= (3y* - 6X)% =6y —3x*
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dy 6y-3x?

= , provided that y;tJ_r\/ﬂ
dx 3y —6x

jy if sin(x+y)=y?cos x

Example 3: Find ax

Solution: Use implicit differentiation with respect to x.

%(sin(x+ y))= %(y2 cos x)
= cos((x + y)i(x+ y)=y’ i(c:os X)+ Ccos xi(yz) Why?
dx dx dx

= cos(x + y)(% (x)+ %(y)j = y?(—sin x)+cos x(2y)% Why?

= cos(x + y)(1+ %) = —y?sinx+2ycos x%
X

X

= cos(x + y)% —2ycos x% =—cos(x+y)—y’sinx  Why?

= (COS(X + Y)— 2y cos X)% =—y?sin X—Cos(x+ y)
- yZsinx—cos(x+y) _ y?sinx+cos(x+y)

dx cos(X+y)—2ycosx  2ycosXx—cos(x+y)

Higher order-derivatives

If f is a differentiable function then its derivative f'is also a function, so f’may have a

derivative of its own, denoted by (f') = f”
This new function f" is called the second derivative of f.

Then we can define f"(a)by the formula

f7(a) = lim )= @)

X—a X—a

, whenever this limit exists.

We call f "(a)the second derivative of f at a. it is often read “f double prime of f at a”.
In general,
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, If this limit exists

In this case, we say that f f' is differentiable at x.
Suppose f "Y(a) denote the (n—1) st derivative at a for n >3, then we can define
f " (a) by the formula

£ (a) = fim - (“)(X); GV () (@)

Using Leibniz notation, we write the n" derivative of y =f (x)as

n-1 n n
d (d yj—d Y~ 9 ($(x)) for nz2

dxl dx™ | dx"  dx

The second derivative, the third derivative and so on are called higher derivatives to

distinguish them from the first derivative.

Remark: f is n times differentiable if f™(x)exists for all x in the domain of f.

Examplel: If f(x)=2x*—3x?, then find f©(x).

Solution: f(x)=2x*—3x’
f'(x)=8x>—6x, f"(x)=24x*-6, f@(x)=48x, f@(x)=48, f®(x)=0
f™(x)=0 for n>5

3
Example 2: Let y = xcos X. Then find KZ

Solution: Y = XCOS X

dy = d—y(xcos X) = COS X — XSin X Using the Product Rule
dx dx

2

d 2/_—y(cosx—xsinx):—(sinx+xcosx):—23inx—xcosx
dx®  dx
dy &

d . . i
v (— 2sin x — x oS X) = —2¢08s X — (COS X — XSin X) = Xsin X —3¢0S X
x®  dx
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EXERCISE ON DIFFERENTIATION

1. Suppose f (X) =2x* +x. Then

a. Use the limit definition of derivative to find f'(-1)

b. Use the result of a to find the equation of the tangent line to the curve
y=2x"+x at (-11)

c. find the equation of the normal line to the y = 2x* +x at (-11)

d. Find a point on the curve where the tangent line is horizontal.

2. Find the derivative of g(x)=+/1+2x by using the definition of derivative.
State the domain of g and the domain of its derivative.

3. Find the equation of the tangent line to the graph of each equation at the
prescribed point.

a.y:sinz(%xj, x =1 b. y=XCOSX , X=—7
c. X*+y?*=13 ,x=-2

4. For what values of x does the graph of y = x+2sinx has horizontal
tangent?

5. Evaluate the following limits, if it exists

tan 6t J16+h-2 D Gat=

a. lim— b. lim ,
t—>0 sin 2t h—0 h x>l x—1

6. Suppose that f (5) =1, f'(5)=6, g(5)=—3, and g'(5)=2.Then find

2. (fg) (5) b Gj (5) c (%] (5)

7. Determine whether or not f'(0) exists for
1
xsin— if x#0
f(x)= X

0 if x=0

8. If f is differentiable function, find an expression for the derivative of the
following functions.
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a. Y= f)EZX) b. y:—1+\xf5(x)

9. Find the derivative of the following functions

T e e e

x® —fx
Ix -1
c.y= d. t :3/'[_ t+1
- ()= (t+)
e.f(x)=x2+secx+\/§ f. f(x)=\/;cosx+xcotx
sin x X% + tan x
. g(x)= h. h =
g g() 1-cosx (X) 3X+ 2tan x
-1
i. g(t)=e"(x+Inx i.v=l X=1
L g(t)=e® (x+inx) iy=n[ X1
10. Differentiate the function
a. y=(2x-5)" (8x° —5)_3 b. y=cot’(sing)
C. y=2cosX? +sin? X d. y=(cos™(sing))
cy-[ter () g

11. Assume that y is a differentiable function of x. Then find % by implicit

differentiation.

a. X’y +xy® =3x b. 1+x=sin(xy2)
C. yX+Yy=1+xy? d. 2(x? +y? ) =25(x* - y?)
e X= In[?j f. sin™(xy)= xy

12. Use implicit differentiation to find an equation of the tangent line to the curve

X2 +y? = (2x2 +2y° — x)2 at the point (0%)

2

13. Find (:j y of the following the functions.

X2
a. y=tan(x?) b. Vx+4Jy =1
d. y:(sinh’l X) e. y:X|n1
X
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14. Find the derivative of the function

a. y=xtanh™ x+Iny1—x> b. y = x*sinh™(2x)
103
15. Find de(COS 2x) by finding the first few derivatives and observing the pattern

that occurs.

16. Show that the families of curves Y = cx’ and Xx°+ 2y2 =K are orthogonal

trajectories of each other. (c, k are constants

1.4 L’Hopital’s Rule

While we study limits in the previous course of calculus we considered limits of quotients

such as

lim X’ and lim,_, o 22*
x—>—2 x+2 x-0 x

and calculated the limits by using algebraic, geometric, and trigonometric methods even
if the limits have the undefined form 0/0. In this section we develop another technique
that employs the derivatives of the numerator and denominator of the quotient. This new
technique is called L‘H0pital’s rule. For the proof of this rule we need the following

generalization of the Mean Value Theorem.

Theorem (Cauchy’s formula)
If £ and g are continuous on [a, b] and differentiable on (a, b) and if g’'(x) =+ 0 for
every x in (a, b), then there is a number c in (a, b) such that

f(b) - f(a) :f’(C)
gb) —g(@ g

The Indeterminate form %

Let L be a real number or co or —oo.
a) Suppose f and g be differentiable on (a,b) and g'(x) # 0 fora < x < b.
If

1o _
9'(x) '

lim,_ + f(x) =0 = lim,_,+ g(x) and lim,_ +
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then
tim L) = i L

et g(x) amat g (%)

An analogous result holds if lim,._,,+ is replaced by lim,_,,- or by lim,_,., where c is
any number in (a, b). In the letter case f and g need not be differentiable at c.

b) Suppose f and g be differentiable on (a, b) and g'(x) # 0 for x > a. If

lim, o, f(x) = 0 = lim,_,,, g(x) and lim,._,, 2&2 =1L,
then
OB (¢
im ——==1L = lim <
x=w g(x) x=w g'(X)
An analogous result holds if lim,_,.is replaced by lim, _,_,.
Example 1:
. sinzx . f(si_u ) . COST
lim = lim #—— = =1.
z—0 T z—0 E(I) z— l
. 2lnzx 4 2nz 2
lim = lim ff( ) = = =2
z—1 I—l r—1 E(I_l) z—l l
d .z
et —1 =(eT—1 -
lim = d‘(d ) - lim — = oo
z—0 IZ z— E(Iz) z— 2;‘

Example 2: Evaluate lim, _,, 1;—3x
Solution: Both the numerator and the denominator have the limit 0 as — 0 . Hence the

quotient has the indeterminate form 0/0 at x = 0. By L°Hopital’s rule
o 1-3*  =3*(In3)
lim =lim——=—-1In3
x—0 X x—0 1

In(1-x2)
x-0 In cos 2x

Example 3: Evaluate lim
Solution: Observe that

limIn(1 — x?) = 0 = lim In cos 2x
x—0 x—0

thus by L‘Hopital’s rule we get
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—2x
In(1-x%) = 1—x2 _ ( 1 —2x )
x—0

im——————— = lim———=— )
x-0 Incos2x  x-0 —2tan2x 1—x2 —2tan2x

RT X . . 1
= llmx_,o P since llmx_)o T2 1

m (cos 2x)]

= lim[ , .
x-0 Isin2x

. . 1
=xL15n sin2x }Cl_r)r(l)(cos 2x) = 2

2

. XT+X
Example 1: lim
x-2 X=1

=6

But what happens if both the numerator and the denominator tend to 0? It is not clear

what the limit is. In fact, depending on what functions f(x) and g(x) are, the limit can be
anything at all!

Example 2:

2
. X . _ _
lim=— =limx=0_ lim =% — lim =% = —o
x—0 X X—0 x>0 x3 x—0 x?
. X .1 . kxo L.
I|m—2:I|m—:oo_ lim— =limk =k
x=0 X x—0" X x—>0 X x—0

. . . 0
These limits are examples of indeterminate forms of type 0

Example 3: Evaluate the following limits using L’Hopital’s Rule

. Inx . tanx—x
a. lim—— b. lim ———
x—>1xX—1 x —0 X

Solution: a. sincelimIn x=0 = lim(x—1), the given expression is 0 indeterminate form.
x—1 x —1
Then by L’Hopital’s Rule we have:

i(Inx 1

~lim X = lim * =1
x>1x -1 xald(x_l) x>171 x-1Y

dx
b. lim(tanx—x)=0 and lim x*=0

x—0 x -0
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. tanx—x . 0 . ) .
Ilrrz)—3 IS 0 indeterminate form. Then by L’Hopital’s Rule we have:
X —>! X
d
——(tan x—x)
. tanx—x _ .. dx
lim———=lim
x =0 X x =0 i(Xg)
dx
(sec’x-1) o
= lim ; This is again — indeterminate form.
x =0 (3X ) O

sec” x -1
We have to use L’Hopital’s Rule to the expression llng(g—z)) and we get
- X

d(seczx—l)
Iirntanx—x_ lim dx
x >0 X3 T x-0 d 2
dX(BX )
_ (2sec’ xtanx-1)
= (&)

1.. ( ) tanxj
= —lim| sec x——

3x-0 X
1.. » .. tanx
= —limsec” x.lim——
3x-0 x—0 X
~1gq21
3 3
Therefore,
. tanx—-x 1
I|m—3:—
x =0 X 3

Remark: Sometimes it may be necessary to apply L’Hopital’s Rule more than once in
the same problem.
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Example 4: Evaluate sin x
lim "
x—> 71— C0S X
. . . . . osinx
Solution: Don’t mislead to use L’Hopital’s Rule since lim——— is not an
x> 71— C0S X

indeterminate form.

We can evaluate the limit by quotient Rule and we get

_ sinx limsinx
lim =— =~ =0
x—> 71— C0S X Ilm(l—cosx) 2

X—>r

But if you use L’Hopital’s Rule by mistake you will obtain

) sin X . COSX .. . . . .
lim ———— = lim ——=1lim cot X, in which the limit does not exist.
x— 71— COS X X->r §INX X—7

Indeterminate Product

If lim f (x) =0 andlimg(x) =o0, then lim f (x).g(x) is called an indeterminate form
of type 0.

We can deal this kind of limit by writing the product fg as a quotient:

f g
fg=—— or fg=—"-—
971y ST

. L . . 0 0 .
These convert the given limit in to an indeterminate form of type 0 or — respectively
o0

.Example 1: Evaluate the following limits using L’Hopital’s Rule

x—>0 * X = X —>1%

: : . : X
a lm xlInx b. lim %™ c. lim Inxtan(%)
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Solution: lim x=0 and lim InXx=—o0
x—>0 * x—0

Therefore, "rgl XIN X is 0.0 Indeterminate form.
%

In x
xInx=—

1/x

. Inx . o . .
Thus lim — is — indeterminate form.
X =0 +1 X o0

Then by L’Hopital’s Rule we have:

] . Inx
Iim xInx= lim —
x—0 * x>0 "1/ X
d
d—lnx
- lim dX
X —>0 *
A Y
dx
= > = Iim —x=0
x>0 * -1/X x>0 *
Therefore,
lim xInx=0
x>0 *

. . . v : 3,-x2 . .
b. Since lim x® =o0 and lime™ =0 _lim x’¢™ is 0. Indeterminate form

X = X —0 X —>

. X
Thus M — is 2 indeterminate form.
X — o eX 00

Then by L’Hopital’s Rule,
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3

X 3
lim — = lim

= lim

X . . 00 . .
» " >, thisisagain — indeterminate form.
X—)ooe X —> © Xe

X —> o 2eX o0
We have to use L’Hopital’s Rule, once more

X3 . 3
lim — = lim — = lim
xamex x»oozex x»oo4xe><

2

=0
Therefore,
3
) X
lim—=0
X — o0 eX

x —>1*

. . X . TX)
c. limInx=0 and lim tan(—j:oo_ Hence lim In xtan(—j is
x >1* 2 x —>1*

0. Indeterminate form.

: In x .0 . .
Now, |lm+—ﬂx IS 0 indeterminate form.
. 1/tan(j

Thus by L’Hopital’s, we have
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Therefore, limIn xtan(ﬁj =_=
x—1" 2

Indeterminate Differences:

Iflim f (x) =0 and limg(x)= oo, then the limit lim( f (x)—g(x))is called an

indeterminate form of co—oo

Remark: to find out the limits of such kind of expression, we have to convert in to a
quotient by algebraic manipulation.

Exapmel: Compute the following limits if it exists

a. lim (secx—tanx) b. Iim(\/x2+x—x)

T X —>o0
X —>—
2

Solution:

a. Since lim (secx)=oo and lim (tanx)=oco lim (secx—tanx) is oo—oo
T V3 T

X —>— X —>— X >—
2 2 2

1 sinx 1-sinx
COSX COSX  COSX

(secx—tanx) =

1-sinx
Cos X

. 0. )
Thus lim is — indeterminate form.

e
X >
2

Then by L’Hopital’s, we get:

. . 1-sinx
lim (secx—tanx): lim
x> x>Z_ COSX
2 2
- lim —COS X
« 7 —SInX
2
. cosx O
= lim —=—=0

(7 sinx 1
2
155
Addis Ababa University , CNCS



Therefore' |Im7 (SE‘C X— tan X) O

7
X >
2

b. Since lim (\/xz +x)=oo and lim x = oo, lim (\/x2 +X —x) is oo—oco indeterminate

X —>o0 X —0o0 X —o0
form.

Rationalized the expression as follows:

X L. ) .
=————  thisis had indeterminate form.

VX2 + X + X o0

Then, by L’Hopital’s Rule we have:

. . 2x+1
(Verify that lim X+

e = :1)
X—>0 IXZ +X

: 1

Therefore, lim («\/x2 +X— x) =3

X —>w

Indeterminate powers: Several indeterminate forms arise from the limit
. g(x
lim( f (x)) *

Llimf(x)=0 and limg(x)=0

2. limf(x)=0 and limg(x)=0

3. limf(x)=1 and limg(x)=o0
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Each of these three cases can be treated by taking the natural logarithm
Lety=| £ (x)*].

Then Iny=g(x)In f(x)

y = eIny _ eg(x)ln f(x)

Thus,

limy = Iim[eg(x)'"f(x)]

Example: Evaluate the following limits.

2 1 1 X
a. lim x* b. lim xx c. lim (1+—j

x—>0" X = o X > X

Solution: Rewrite each of the expression in exponential form

Inx

'
a. X =€ .Then

lim x%Inx

lim x* = e*”

x—-0"

It is clear that lim x%Inx is 0.c0 indeterminate form.

x—>0"%

) In x
X“Inx=—
1/x

) Inx . oo . )
lim > Is — indeterminate form
x>0"1/X 0

Inx 1/x 1 )

lim = =—— lim X
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Therefore,

_ ) lim ¥ Inx .
lim x* = =¢°=1

x—0"

1
b. lim x* is oo° indeterminate type

X —> 0

1 1
= =Inx
X* =g

1 1 . Inx
ZlInx lim —

lim x* = lim ex =g *

X —> © X —> ©

. Inx . o . ]
The limit lim — is — indeterminate form.
X — oo X o0

Then by L’Hopital’s, we will get

. Inx . 1/X
lim—=1lim—=0_
X—>wo X X — oo ]_

Therefore,

1 . _Inx
. = lim— 0
limx* =g~ *x =e” =1
X—00

1 X
c. lim (1+—j is 1” indeterminate type.

X —> X

l+§j _ eXIiT”{X In[1+)1(ﬂ
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The limit lim {Xln(l+ lﬂ is 0.0 indeterminate form.

e 5

X 1/x
In(1+lj
X

) 0 . ]
lim ———= is = indeterminate form
x> 1/X 0

Then by L’Hopital’s Rule, we have:

In 1+1
_ X . —x/x*(x+1)
lim ——= = lim —————
x>o 1[X x>o o —1[X
= lim =2 =1
x>0 X +1
Therefore,
1
_ 1 X lim xin | 14
lim (1+—) = e { [ Xﬂ:elz e
X >0 X
EXRECISES:

1. Evaluate the following limits Using L’Hopital’s Rule

_x-—sinx _sin? x _In(x*+1) x
a im=—"2  p limo— o lim—— . lim[
x>0 tan” x x=0 51N X X—>0 X x—1'\ X =1

2. Find A so that lim X+ A X—5
. FIN SO tha ool x—2A
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Chapter 2: Applications of the Derivative

Introduction:
Derivative has a lot of application in physical sciences, natural science and social science
field of studies. We will see some of its application in this chapter.

The primary goal of this chapter is to examine the application of derivative in:

. Solving optimization problems

. Finding intervals of monotonocity
. Evaluating relative extreme values
. Evaluating absolute extreme values
. Curve sketching

Objectives: At the end of this chapter the students will be able to:

& State The Mean Value theorem

& State Maximum - Minimum value Theorem

& Find local maximum and local minimum values of a function

& Find absolute maximum and absolute minimum value of a continuous function
& Express related rate problems in mathematical formula

& Sketch graphs of functions

2.1 Maximum and Minimum Values of a continuous function
Consider the graph of some continuous function f on [a, b] as shown below.

a. Does the graph have the highest point on it? If so what is that point

b. Does the graph have the lowest point on it?

c. Does the graph contain both the lowest and the highest point on it?

d. Do you think that every continuous function on a closed interval has both
the lowest and highest point on it? What do you call these points?

160
Addis Ababa University , CNCS



Bl
X

Definitionl:

1. A function f has an absolute maximum (global maximum) value at c if
f(c)> f(x) for all x in D, where D is the domain of f.

The number f (c) is called the maximum value of f on D.
. Similarly, f has an absolute minimum (global minimum) value at c if

f(c)< f(x) forall x in D and the number f(c) is called the Minimum value of f on D.

Note: Either the absolute maximum or minimum value of f is called absolute extreme
values.

The graph below shows the absolute maximum and absolute minimum points on the
curve of a continuous function on [a, b]
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y absolute maximum point

absolut minimum ponit

Local Maximum and local minimum Values of a function

Definition 2: A function f has a local maximum (or relative maximum) value at c if
f(c)z f(X) When x is near c (i.e. for all x in an open interval containing c)

f has a local minimum (relative minimum) value at c if:

f(c)< f(x) for all x in an open interval containing c.

The Extreme Value theorem

If f is continuous on a closed interval [a, b], then f attains an absolute maximum f(c) and
an absolute minimum value f(d) at some number cand d in [a, b].

Fermat’s theorem:
If f has a local maximum or local minimum value at ¢ and if f'(c) exists, then f'(c)=0.

Proof: Assume that f has a local maximum at c.
Then by definition 2 above, we have:

f(c) > f(x) forall xe (c—h,c+h), where h is small positive number .
— f(c) > f(c+h)
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= f(c+h)-f(c)<0 --- Rewriting the preceding expression.

:>f(c+

hh)_f(c)sowmo

Taking the limit on both sides, we have
£/(c) = lim fle=n-1e)_ yimo-o

h—0 h h— 0

This gives us,
fllc) <0 ---  (7)
When h <0, we get:
f(c+h)-f(c)
h

f'(c)=lim

h—0
ie. fc)<0 ---(8)
From (7) and (8), we have:
0< f'(c)<0
Therefore, f'(c)=0

> 0, then taking the limit on both sides gives

f(c+h)—f(c)<Iirn 0-0
h “hoo

Critical Number:

Definition: A number c in the domain of a function f such that either f'(c)=0 or

f'(c) does not exist is said to be Critical Number of f.

Example 3: Find the critical number(s) of the function
2

a. f(x)=x° b. f(x)=x*+3x*—24x
Solution: First we have to determine the domain of the function

a. Domain of f is the set of real numbers.

2 2 2 . L
f'lx)==x2=—— --- differentiating f
(x) 3 o g
2
f'(x)=0=> —=0
(x) 3Vx

— 2 =0, which implies, there is no real number which makes f'(x) zero.

f'(x) does not exist at x = 0 which is in the domain of .
Therefore, 0 is the only critical number of f.

b. Domain of f is the set of all real numbers.
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f'(x) = 3x® +6x — 24 exists for real number x.
f'(x)=0 = 3x* +6x-24 =0
=X’ +2x-8=0
= (x+4)x-2)=0
= X=—-40r x=2
Hence the only critical numbers of f are -4 and 2.

Remark:

If f has a local maximum or minimum at c, then c is a critical number of f, but not
every critical number gives rise to a maximum or a minimum value

2.2 Rolle’s Theorem and Mean Value Theorem

To arrive at the Mean value Theorem, we first need the following result

Rolle’s Theorem:
Let f be a function that satisfies the following three hypotheses:
1. fis continuous on the closed interval [ a, b ]

2. fisdifferentiable on the open interval (a, b)
3. f(a) =f(b)
Then there is at least one number c in (a, b) such that f'( )=0

In other words, there exists a point in the interval (a, b) which has a horizontal tangent.

Examplel: Find a number c that satisfy the conclusion of Rolle’s Theorem if the
hypothesis are satisfied

a. f(x)=xJ/x+6 [-6, 0]
b. g(x)=x* —3x* +2x [0, 2]

Solution:

a. Domain of f= {X:x + 6 >0} = {x:x>—6}

i. If is continuous on [-6, O] since every function is continuous on their domain

it ’(x): 3x+12
' 2+/X+6

which exists for all X € (— 6,0) , 1.e. fis differentiable f on
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(-6, 0)
iii. f (-6) =0 =1(0)
The three hypothesis of Rolle’s Theorem are satisfied
Therefore, by Rolle’s Theorem there exists a number c¢ in (-6, 0) such that
f'(c)=0
Now, from (ii) above, we have

3c+12
£/(c)=—222 ~0. This gives us:

2+/C+6

3c+12 0
2+C+6

3c+12=0.S0 c=-4
Hence ¢ = -4 €(—6,0) is the number which satisfies the conclusion of Rolle’s Theorem.

b. since g is polynomial function
I. It is continuous [0,2]
ii. It is differentiable on (0, 2) and
iii. f (0) = 03-3(022 +2(0) =0
f(2)=23-3(2)+2(2)=8-12+4=0
That is f (0) = (2)
The three hypothesis of Rolle’s Theorem are satisfied.
Then Rolle’s Theorem guaranteed that there is at least one number ¢ in (0, 2) such that
f'(c)=0
f'(x)=3x* —6x+2. Then to find ¢ solve f'(c)=0
f’(c)=3c*-6c+2=0

3c® —6¢c+2= 0, using general quadratic formula to find c, we get

C:6+\/E _ V3 C:6—«/E V3

1+—or =1-—
6 3 6 3
Since both values of ¢ are in (0, 2) the numbers which satisfy the conclusion of Rolle’s
J3

Theoremarec:1+§ and c:1—?

Example 2: Let f(x)=|x| forall ¢ in [-1, 1]. Verify whether there is number

c in [-1, 1] such that f'(c)=0. If there is no such number, does this contradict the
conclusion of Rolle’s Theorem? Explain.

Solution:
(00 =K~

Differentiating f gives us, f'(x) = {

X if x>0
- X if x<0
1 if x>0
-1 if x<0
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Then there is no number ¢ in [-1, 1] such that f'(c)=0

This does not contradict Rolle’s Theorem because f is not differentiable at 0.
Thatis f, (0)=1 and f'(0)=—1

This implies f is not differentiable at 0.

The Mean Value Theorem (MVT): Let f be a function that satisfies the following

hypothesis:
1. f is continuous on the closed interval [a, b]
2. fis differentiable on the open interval (a, b)

Then there is at least one number ¢ in (a, b) such that

f’@):% or f(b)—f()= f'(c)b-a)

Geometrically, The Mean value Theorem states that there is a tangent line to the graph of
f at some point between a and b which is parallel to the line joining the points (a, f (2))
and (b, f (b)).

S (b,f(b))

7

A

MVT through this material stands for Mean Value Theorem
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Proof: We apply Rolle’s Theorem to the new function h defined by:

h(x) =f(x) -y (5)
sy Y- 1@)_fb)-1(a)
X—a b-a
f(b)-f(a) o N
= Yy= f() b_a ( a).Substltutlngthlsvalueofy|nequatlon (5) we get
f

b)-f(a
(1)1 ()~ )+ 0= T @
Since f(x) is continuous on [a, b] and differentiable on (a, b), and f (a) is constant and
f(b)-1(a)
b-a
I. h(x) is continuous on [a, b] since it is a combination of continuous functions

x—a) is a linear function and differentiable on R , then we have:

ii. h(x) is differentiable on (a,b) as it is a combination of differentiable function.
iii. h (@) = 0 = h(b)

The three hypothesis of Rolle’s Theorem are satisfied on [a,b].

Then by the conclusion of Rolle’s Theorem, there exists at least one number ¢ in (a, b)
such that h'(c) =0

But h(x)= £/(x) + 1) (@)

f
b—a

Note:
If an object moves in a straight line with position at any time tis s =f (t) for tin
[a, b], then the average velocity betweent=aand t=b is:
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f(b)-f(a)
b-a
Then the mean Value Theorem tells us that at some time t = ¢ between a and b the
instantaneous velocity is equal to the average velocity.

and the velocity at t = c is f'(c).

Remark:

I. In general the Mean Value Theorem can be interpreted as saying that there is
a number at which the instantaneous rate of change is equal to the average
rate of change over an interval.

ii. MVT helps us to obtain information about a function from information about its
derivatives.

Consequences of the Mean value theorem

The Mean Value Theorem can be used to establish some of the basic facts of
differential calculus. One of these basics is the following theorem.

Theorem 3:1: If f’(x)= 0 forall x in an interval (a, b), then f is constant on (a, b).

Proof: Use MVT to prove this theorem.
Let X1, X2 be any two arbitrary points in (a, b) with x; < X,

Since f is differentiable on (a, b) it is differentiable on (x1, X2) and also continuous on (X,
X2).Hence f satisfies The MVT on (X1, X2)
Then by The MVT, there is a number ¢ in (X1, X,) such that:

f’(C): f(xz)_ f(xl) =0
Xp =%

= f(x,)— f(x)=0 --- multiply on both sides of (6) by (X2-x)

= f(x)=f(x)

Since x; and x; are arbitrary point in (a, b) f is constant on (a, b).

-(6) since f'(x)=0forall x in an interval (a,b)

Corollary 3:1: If f’( ): g'(x) for all x in an interval (a, b) then f and g differ by a

constant on (a, b), that is, f(x) = g(x) + c., where c is arbitrary constants

Proof: Let h(x) = f(x) — g(x) for all x in an interval (a,b).
Then W(x)=f'(x)-g'(x)=0 since f'(x)=g'(x) forall x in an interval (a, b)
But by theorem 1, above h is a constant on (a, b), that is:
h(x) = f(x) — g(x) = ¢, where c is constant

168
Addis Ababa University , CNCS



This implies, f(x) = g(x) + ¢

Example 1: Suppose that f (0) = -3 and f’(x)£5for all values of x.
Find the largest possible value of f (2).

Solution: We have given that f is differentiable and f'(x)<5 for all values of x.
Consider the interval [0, 2].
f is differentiable and continuous on [0, 2]. Then by the MVT, there exists a number c in
(0, 2) such that:
f'(c)= f2)-f0)_ f(2)+3 , since f (0) = -3.
2-0 2
f(2)=2f'(c)-3, solving for f (2)
Since f'(x)<5 for all values of x and hence f'(c) <5, we get
f(2)<7
Therefore the largest possible value of f (2) is 7.

Example 2: Suppose that f’(x) = g’(x) for all real number x and if
g(x) = x* +x—1and f (1) = 3, then find f(x).

Solution: By corollary 3:1 f and g differ by a constant, that is
f(x) = g(x) + ¢ where c is a constant to be determined

Then, we have: f(x) =x* +Xx—1 + ¢ - - - substituting the value of g(x).

f(1)=22+1-1+c=3---sincef(1)=3
This gives 1+ ¢=3,s0c = 2.
Therefore, f(x) =x* +x—1 + 2

Note: Care must be taken in applying Theorem 3:1.
x |1 if x>0
Let f(X)=—=
951

if x<0
The domain of fis 7/ /{0} and f'(x)=0forall xin R/{0}.
But f is obviously not a constant function. This does not contradict Theorem 3:1 since R/
{0} . is not an interval.

Notice that f is constant on (—o0,0) and(0,).

. G, T
Example 3: Prove the identity tan™ x+cot™ x = >

Proof: Although calculus is not needed to prove this identity the proof using calculus is
quite simple.

If f (x)=tan" x+cot " x = % . then
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1 1
f(x) = -

() 1+x> 1+x°
To determine C, we put x =1 (because we can evaluate f (1) exactly.
C=f(1)=tan"1+cot™1= rr_r

2 2 2

= 0 for all values of x. Therefore, f(x) = C is a constant.

Thus, tan™" X +cot ' x = %

Example 4: For each of the following functions

I. verify whether the hypotheses of The Mean Value Theorem are satisfied
ii. If the hypotheses of The Mean value Theorem are satisfied, find a value that
satisfies the conclusion on the given interval.

a. f(x) = x+§ , E ,1} b. g(x) = %xz x4 [-11]
_ X -
ch=—— [L4] d. f(x)=Inx, [Le]

Solution:

. 1 . .
a.i. f'(x)=1- vl which exists for all real number x except 0.

Hence, f is differentiable on (% ,1] and continuous on E ,1}

Therefore, f satisfies the hypothesis of The MVT.

ii. by the conclusion of the MVT , 3 c e (% ,1) such that

(1) f(l

f’(c)=—12j= Z(f(l)— f@D

1-=
2
This implies,
e
c 2
2_
c : 1:_1
C
1
Solving for ¢, we getc =+— . Reject c=——¢|—,1
: J ) V2 {2 }
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) . . 1 .
Therefore, the number which satisfies the conclusion of The MVT on [E,l} is

1 1
c=——=0707e|=1
o3

b) i. Since f(x) is a polynomial it is differential on (-1,1) and continuous on [-1, 1]
f'(x)=x—4x°
ii. Then by the conclusion of The MVT, 3 ¢ € (-1,1) such that:

f'(c)= -1 Conclusion of the MVT

1-(-1)
ENE
-4t =2 2y
2
:>c(1— 4c2) =0
. 1 : :
Solving for ¢, we getc=0, or ¢ == > all of them are in the interval (-1, 1).
Hence, the Values of c that satisfy the conclusion of the MVT in (-1, 1)

1
are ——, 0, 1.
2 2

c) . h'(x) = 2 which exists for all real number x except -2.
(x+2)

That is h is differentiable on (1, 4) and continuous on [1, 4].

Then by the conclusion of the MVT, 3c € (1,4) such that:

o) M-
4-1

2 1

2 3 3 1
= == Why?
Tce2F 3 9 M

—18=c’+2c+4

- - - conclusion of MVT

=¢?+2c—14=0 . Solving this quadratic equation using quadratic formula
we obtain,

C_ﬂ _ 1+ /15

Ignore ¢=-1—,/ 15 since it is not in (1, 4)
Hence the number which satisfies the conclusion of The MVT in (1, 4)

is—1+\/T5.
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1
d. f’(X) = “ exists for all x in the interval [1, €], then by the conclusion of the

MVT, 3 ¢ €[Le] such that:

£/(c)= f(e)- @)
e-1
1 Ine-In1 1-0 1
c e-1 e-1 e-1
—Cc=e-1
Hence the value of c that satisfies the conclusion of the MVT in [1, e] is e-1

Key Concepts

The Mean Value Theorem
1. If f is continuous on[a,b] and differentiable on (a, b), then there exist a
number ¢ such that:

fr(c) _ f(b)_ f (a)

b-a
Rolle’s Theorem

2.1f f(a)=f(b) in1above, we get
f'(c)=0

2.3 Monotonic functions

Consider the function f (x)=3x"—4x° —12x* +3 on the interval [-2, 3]. We cannot find

regions of which f is increasing or decreasing, relative maxima or minima, or the absolute
maximum or minimum value of f on [-2, 3] by inspection. Graphing by hand is tedious
and imprecise. Even the use of a graphing program will only give us an approximation
for the locations and values of maxima and minima. We can use the first derivative of f,
however, to find all these things quickly and easily.

Increasing and decreasing function

Definition: A function f is said to be:

i. Increasing on an interval 1if f(x,)< f(X,)whenever x, < x, forall x, ,x, inl.
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Increasing decreasing Test (ID Test)

Let f be continuous on an interval | and differentiable on the interior of I.

« If f'(x)>0forallxel, then fis increasing on I.

« Iff'(x)<0 forallxel, then fis decreasing on I.

ii. Decreasing on an interval | if f(x)> f(x,)whenever x, < x, forall x, ,x, inl.

Example: Find the interval where f is increasing and where it is decreasing
for the function f (x)=3x*—-4x* —12x* +3
Solution:

The function f (x)=3x" —4x* —12x* +3 has first derivative
f'(x)=12x* —12x* — 24x

=12x(x* —x—2)

= 12x(x+1)(x—-2)

-1 0 2
12x - - - -0+ o+ o+ + + +
x+1 - - -0+ o+ 4 + o+ o+ ot 4
X-2 T - - - - - - + o+ +
t'(x) - + + + - - - + o+ o+

Thus, f(X)is increasing on (—1,0)U(2,%)and decreasing on(—,—1)(0,2).

2.4 Search for local (relative) maxima and Minima
Relative extrema of f occur at critical points of f, values X, for which either
f'(Xo) = 0 or f'(Xo) is undefined.
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First Derivative Test:
Suppose that c is a critical number of a continuous function f.

1. If f'changes sign from positive to negative at c, then f has a local maximum
value at c.

2. If f’ changes sign from negative to positive at c, then f has a local minimum

value at c.
3.If f '(X) doesn’t change sign at c, then f has neither local maximum nor local

minimum value at c.

Example: Use the First derivative Test to find the local extreme of the following

functions
XZ
Cf(x)=5+3x2 + X8 b. X) = ~ h(x)=xInx
a. f(x)=5+3x%+x g() 13 c ()
Solution: a. f'(x)=6x+3x? - differentiating f to obtain |

f(x)=0=3x (2+x)=0
= x=00r x=-2
0 and -2 are the critical numbers of f.
Then Use sign Chart to observe the sign of ' on the

Intervals (—o0,—2), (—2,0), (0,)

-2 0
X € (—o0,-2) xe(-2,0) xe (0,)
3X _ _ 0
2+X . ) + +
f'(x)=3x(2 + x) + ) _ ( +

Then, using the sign chart above and the First derivative Test,
f(~2)=5+3(-2)" +(~2)° =9is local maximum value of f and
f(0)=5 is local minimum value of .

b. Use Quotient Rule to find 9'(x).
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2 _ 2
g’(x :ZX(X +3) ZX(X )= ox , this exists for all real values of x.
(x2 + 3)2 (x2 + 3)2
g'(x)=0= x=0
Therefore, 0 is the only critical number of f.
2 2
Since (X + 3) is always positive, we have:
9'()>0 ity 5 0and 90)<0 it y <

Hence, 9 changes sign from positive to negative at 0

As a result of this, g (0) = 0 is local maximum value of and g has no local
minimum value.

c. Use product Rule to find h'(x).

h'(x)=Inx +1
h(x) =0 =Inx+1=0
=Inx=-1
41 . -
X=6€ " = o , this is the only critical number of h.

We can see that, h'(x)>0 for x> and h(x)< 0 for x<t
e

e/ €

Therefore by The first derivative Test, h(lj:1 In(
e e

1 1. )
= |=—=="is local maximum value of f.

2.5 Absolute Maxima and Minima of a function

« If f has an extreme value on an open interval, then the extreme value occurs at a
critical point of f.

o |f f has an extreme value on a closed interval, then the extreme value occurs either
at a critical point or at an endpoint.

According to the Extreme Value Theorem, if a function is continuous on a closed

interval, then it achieves both an absolute maximum and an absolute minimum on the
interval.

Example 1: Find the absolute maximum and minimum value of the function

f(x)=3x*-4x*-12x* +3 on [-2,3]
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Solution: Since f(x)=3x"—4x’>-12x*+3 is continuous on [-2, 3], f must have an

absolute maximum and an absolute minimum on [-2, 3]. We simply need to check the
value of f at the critical points x = -1, 0, 2 and at the endpoints x = -2 and x = 3:

f(-2)=35; f(-1)=-2;f(0)=3; f(2)=-29; f(3)=30

Thus, on [-2, 3], f(x) achieves a maximum value of 35 at x = -2 and a minimum value of -
29 atx = 2.

We have discovered a lot about the shape of f(x)=3x"—4x>—12x* +3 without ever
graphing it!

Example 2: Find the absolute maximum and minimum value of the following functions
on the indicated interval.

a f(x)=x"-x*+1; {—%,4} b. g(x)=(x—1)3; [-1,2]
c h(X)=§2;j - [-44]
Solution:

. . . 1
a. Since f is continuous on {—5,4] by the Extreme Value Theorem f has both the

) .. 1
maximum and minimum value on [—5,4 )

f'(x)=3x*—2x
Then set f'(x) =0, to find the critical numbers
f'(x)=3x*-2x=0
X(3x—2)=0
This implies,
X =0and x= %are the critical numbers of f on [—%,4}
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2 —
Then computefatx:O,g, > , 4

. . 2 1
Therefore, f(4)=17 is the absolute maximum value and f [5) =

is the absolute minimum value of f on [—%,4]

b. g'(x)=3(x-1)°
On equatingg'(x) =0, we getx = 1

Thus x = 1 is the only critical number of g on [-1,2].

(1) = (-1-1) = (-2) =8

Therefore, 8 is the absolute maximum value and 0 is the absolute value of

gon[-12].

o (x) = 2x(X* +4)—2x(x* —4) 8
. (x2 +4)2 (x2 +4)2

On setting h’(x) =0, we get x =0

Thus x = 0 is the only critical number. Then evaluate h at x =0, -4, 4.

n(0) = —L; h(~4)= o =< =h(4).
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Therefore,
3 ) . -
5 and -1 are respectively the absolute maximum and minimum value of f

on [-4, 4].
Key Concepts

Increasing or Decreasing?

o Let f be continuous on an interval | and differentiable on the interior of I.

If f'(x)>0forallxel,thenfisincreasing on land If f'(x) <0 for

allx el , then f is decreasing on I.
« Relative Maxima and Minima
By the First Derivative Test, relative extrema occur where f '(x) changes sign.
e Absolute Maxima and Minima

If f has an extreme value on a closed interval, then the extreme value occurs either
at a critical point or at an endpoint.

Concavity and the Second Derivative Test

You are learning that calculus is a valuable tool. One of the most important applications
of differential calculus is to find extreme function values. The calculus methods for
finding the maximum and minimum values of a function are the basic tools of
optimization theory, a very active branch of mathematical research applied to nearly all
fields of practical endeavor. Although modern optimization theory is considerably more
advanced, its methods and fundamental ideas clearly show their historical relationship to
the calculus. In this section you will review how the second derivative of a function is
related to the shape of its graph and how that information can be used to classify relative
extreme values.

Concavity
The Second Derivative Test provides a means of classifying relative extreme values by

using the sign of the second derivative at the critical number. To appreciate this test, it is
first necessary to understand the concept of concavity.

178
Addis Ababa University , CNCS



The graph of a function f is concave upward at the point (c, f(c)) if f '(c) exists and if for
all x in some open interval containing c, the point (x, f(x)) on the graph of f lies above the
corresponding point on the graph of the tangent line to f at c. This is expressed by the

inequality f(x)>[f (c)+ f'(c)(x—c)] for all x in some open interval containing c.

Imagine holding a ruler along the tangent line through the point (c, f(c)): if the ruler
supports the graph of f near (c, f(c)), then the graph of the function is concave upward.

The graph of a function f is concave downward at the point (c, f(c)) if f'(c) exists and if
for all x in some open interval containing c, the point (x, f(x)) on the graph of f lies below
the corresponding point on the graph of the tangent line to f at c. This is expressed by the

inequality f (x)<[ f(c)+ f’(c)(x—c)]for all x in some open interval containing c. In
this situation the graph of f supports the ruler. This is pictured below.

Chacve supports elos
Comvcawe Dwourmrsard

v = fix})

Transitico belween concawve upward
and conemec donTmeard:
an infleckiot poitk
Transitica belvwoon comcave dowoward
armd coneavs npecard: an inficelioo poinl I TTT 1
Rul] supponTs curwe:
Coecave Upward

—
-

¥
><

Concavity Theorems If the function f is twice differentiable at x = c, then the graph of f

is concave up ward at (¢, f (¢)) if f"(c)>0and concave down ward if f"(c)<0

Example

Suppose f (x)=x>—3x* + x—2. Let's determine where the graph of f is concave up and
where it is concave down. Since f is twice-differentiable for all x, we use the result given
above and first determine that "' (x) =6(x—-1).

Thus, f"(x) >0 if x> 1 and f "(x) < 0 if x < 1. By the Concavity Theorem, the graph of f
is concave up for x > 1 and concave down for x < 1.
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Inflection Points

Notice in the example above, that the concavity of the graph of f changes sign at x = 1.
Points on the graph of f where the concavity changes from up-to-down or down-to-up are

called inflection points of the graph.

Inflection Point Theorem: If f'(c)exist and f”(c)change sign at x = c, then the
point (C, f (c)) is an inflection point of the graph of f. If f"(c)exists at the

inflection point, then f"’(c) =0

The following result connects the concept of inflection point to the derivatives properties
of the function:

We return to our example, where f (Xx)=x>—-3x*+x—2, the INFLECTION POINT
THEOREM verifies that the graph of f has an inflection point at x = 1, since

f>’(1)=0.
The Second Derivative Test
The Second Derivative Test relates the concepts of critical points, extreme values, and

concavity to give a very useful tool for determining whether a critical point on the graph
of a function is a relative minimum or maximum.

The Second Derivative Test: Suppose ¢ is a critical point at which f'(c)=0

and that f"'(c) exists. Then f has a relative

i. maximum value at ¢ if f"(c)<0

ii. minimum value at c if f"(c)>0

Example 1:

Let's find and classify the extreme points for the function f with values
f(x)=x>-3+x-2 .
We find that f'(x)=3x* —6x+1, and so there are two critical numbers where
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f'(c)=0:

f”"(x)=6x—-6=6(x—-1)

C, :1+@z1.82 and c, =1—@ ~0.18
3 3

Notice that at c; we get that f'(C,;) > 0. Thus f has a relative minimum value at

6 " . .
X :1+? and f’ (c2) < 0, the Second Derivative Test informs us that f has a relative

J6

maximum at X :1—?

Example 2: Find the local Extreme value of the following function using the
Second Derivative Test

a. f(x)=x"-4x° b. g(x)=x+x-1 c. h(x)=x"-2x*+3
Solution:
a. f'(x)=4x*-12x

=4x*(x-3)

To find the critical numbers set f'(x)=0

4x* (x—3)=0, this gives us, x = 0 or x = 3.
Thus x =0, 3 are the critical numbers of f

f''(x)=12x* — 24x

Then evaluating f"'(x) at the critical numbers, we get:
£7(0)=0

f(3)=12(3")-24(3) =36

Then by the Second Derivative Test, f (3) = 36 is relative minimum Value of
f and f has neither maximum nor minimum value at x = 0. We can use the

First Derivative Test to see that f'(X) doesn’t change sign at x = 0.
1
2+x-1

b. g'(x)=1+
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Setting 9'(Xx) =0 gives us, x = %

. 5. .
As a result of this x = 2 is the critical number of g.

B
() 4
4
Then by the Second Derivative Test, g has a relative maximum value at

5
X=—
4

That is:

g > :§+JE—1:Z is the relative maximum value of g.
4) 4 \4 4

c. h'(x)=4x —4x
= 4x(x* -1
= 4x(x-1)(x+1)
h'(x)=0ifx=0orx=1orx=-1
Thus the critical numbers of h are x =-1, 0, and 1.

h"(x)=12x* -4
Then, evaluating h”(x)at these critical numbers gives us:
h"(-1)=8
h”(0)=-4
h'(1)=8
Therefore by the Second Derivative Test, h has a relative maximum value at
x =0 and a relative minimum value at x = 1and x =-1.

That is:
h(-1) =2=h(1) is a relative minimum value and h(0) =3 is a relative

maximum value.

2.8. Rate of change
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To understand this section, you should be familiar with the chain rule for derivatives or
implicit differentiation.

If Q is a quantity that is varying with time, we know that the derivative measures how
fast Q is increasing or decreasing .Specifically, if we let t stands for time, then we have
the following

Rate of change of a quantity
Rate of change of Q = Z—?
ACTIVITY

The weight (in kg.) of rocket fuel in a rocket launcher is given by

1 4 .
W (t) =- ——-, where t is time in seconds.
t t?

At time t = 10 seconds, the amount fuel in the launcher is
A. Decreasing at a rate of 0.002kg./s
B. Increasing at a rate of 0.002kg./s.
C. Increasing at a rate of 0.8kg. /s.
D. Not changing at all

In a related rates problem, we are given the rate of change of certain quantities, and are
required to find the rate of change of related quantities.

The procedure is to find an equation that relates the two quantities and then use the Chain
Rule to differentiate or use implicit differentiation on both sides with respect to time.

For this section, we have developed a simple, step- by —step approach to solve related
rates problems which we shall illustrate with examples

Example 1: The area of a circular disc is growing at a rate of 12cm?/s. How fast is the
radius growing at the instant when it equals 10cm?

Stepl: Identify the changing quantities, possibly with the aid of a sketch
Here the changing quantities are:

A. Derivative of the area B. radius of a disc
C. Time D. area of a disc

The changing quantities are the area of the disc and the radius of the disc

Here is a little sketch of the disc showing the changing quantities
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r = radius of disc
A = area of disc

Note: At this stage, we do not substitute values for the changing quantities.
That comes at the end.

Step2: Write down an equation that relates the changing quantities.
A formula that relates the area A and the radius r is
A= rr?
Step3: Differentiate both sides of the equation with respect to t.
The derived equation is

dA dr

—=2rr—

dt dt

dr 1 dr

T dt 2zrdt
Substituting the given values and solving for the unknown gives:
ar Y oem2rs=2emis

dt 2z (10cm) 5z

Example 2: Air is being pumped in a spherical balloon so that its volume increases at a
rate of 100cm?® /s. How fast is the radius of the balloon increasing when the
diameter is 50cm?

Given: the rate of increase of the volume of air in the balloon, i.e,

v _ 100cm? /s.
dt

Required: The rate of increase of the radius when the diameter is 50 cm
(The radius r = 25cm), i.e, % =7
Solution: Let V be the volume of the balloon and r be its radius.
Vv :%72' ré.

Since the volume of the balloon depends up on the radius, we have

d—V:47zI‘2
dr

Both the volume and the radius of the balloon are changing with time
Now, by Chain rule we get,
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dv dVv dr dr dr
="~ =4zr®— and solve for— . We obtain:
dt dr dt dt dt

a_ 1 av

dt  4zr? dt

dv
When r = 25¢cm and P 100cm® /s, then

dr _ ;.100cm3/s=icm/s

E B 47[(25)2 cm? 257

. . . 1 .
Therefore the radius of the balloon is increasing at the rate of fcm/ s when the radius
7T

of the balloon is 25cm.
Strategy to solve related rate problems

1. Identify all given quantities and all quantities to be determined.
If possible, make a sketch and label the quantities.

2. Write an equation that relates all variables whose rate of change is either
given or to be determined.

3. Use the chain rule or implicit differentiation on both sides of the equation with
respect to time.

4. Substitute in to the resulting equation all known values of the variables and
their rates of change. Then solve for the required rate of change.

Example 3: A ladder 10 feet long rests against a vertical wall. If the bottom of the ladder
slides away from the wall at a rate of 1ft/s, how fast is the top of the ladder sliding down
the wall when the bottom of the ladder is 6 feet from the wall?

Solution:
Let x be the distance from the bottom of the ladder to the wall at ant time t
Let y be the distance from the top of the ladder to the ground at any time t

Note: x and y are both function of time
o ||

Z

< X

dx
We have given: E: 1ft/s and the length of the ladder is 10ft
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gy
Required: E , When x = 6ft

But from Pythagorean Theorem, we have
x? +y? =(10)° =100. (1)
Whenx =6,y =8
Differentiate this equation implicitly on both sides, i.e,

d(. ..\ d

— =—(100

0 7 y)= 000

:Zx%+2yﬂ=0
dt dt

3
Therefore the top of the ladder is sliding down at the rate of 2 ft/s at the instant when

the bottom of the ladder is 6ft from the wall.

Example 4:
Car A is traveling west at 50km/h, and car B is traveling north at 60km/h. Both are
headed for the intersection of the two roads. At what rate are the cars approaching each
other when car A is 0.3km and car B is 0.4kmfrom the intersection?

I X Car A

4

CarB
Solution: At any time t, let x be the distance from car A to the intersection point |I.
Let y be the distance from car B to point | and z is the distance between the two cars.

Given: X =—50km/h, ﬂ: —60kk/h

dt dt
(Note: the derivatives are negative because x and y are decreasing)
Required: 3—? when x = 0.3km and y = 0.4km

By Pythagoras Theorem in right triangle ABI, we have

When x = 0.3 km and y = 0.4 km we get,

2 = x2+y2 (1)
22 = x2+y z=+(0.3)° +(0.4)* = /0.25 =0.5km

Differentiate each side of (1) with respect to t.
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829 (e ey

:>22$=2x%+2yﬂ
dt dt dt

== -
dt z\ dt dt

dz_l[xdxﬂlﬂ) )

Then if we substitute x = 0.3, y = 0.4 and z = 0.5 in equation (2) we get

Ll :L(oskm (- 50km/h) +0.4km (~60km/h))=—78km/h
dt  0.5km

Therefore the cars are approaching at a rate of 78 km/h.

Example 5: All edges of a cube are expanding at a rate of 3cm/s. How fast is the volume
changing when each edge is 1cm?

Solution: Let the edge of a cube be x cm at any time t.

Given: % =3cm/s
dt

. dv .
Required: Ty at x = 1cm the volume of a cube of edge x cm is

V(x) = x°. (3)
Since both the volume and the sides of the cube are
changing with time, differentiate (3) with respect to t gives us

Substituting x = 1cm and%=3cm/s, we

obtain d—V=3cm3 /s
dt

Therefore the volume is changing at a rate of 3cm?s.

2.9 Curve sketching

The following checklist is intended as a guideline to sketch a curve y = f(x) by hand.
1. Determine the domain: The set of values of x for which f(x) is defined.
2. Determine the intercepts(x- and y-intercepts)
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The y- intercept is f (0) and this tells us where the curve intersects the y- axis.
To find the x- intercept, we set y = 0 and solve for x, and it is the point where
the curve intersects the x-axis.

3. Determine the asymptotes:

I. Horizontal asymptotes:
If lim f (x)=L or lim f (x)=L, then the line y = L, is a horizontal asymptote to

X—>00 X—>—00

the curve of y = f(x)

I. Vertical Asymptotes:
The line y=a is a vertical asymptote if at least one of the following is true.

lim f(X)=ioO or lim f(X):ioO

x—a* x—a~

4. Determine the interval for which f is increasing and f is decreasing by using
ID Test (Increasing decreasing Test)

5. Determine relative extreme values either by using the First Derivative Test or
the second Derivative Test

6. Determine the interval for which f is concave up and concave down and the
inflection points.

7. Check for symmetric: by determining whether the function is even or odd.

Examplel: Sketch the graph of y = x* —4x®
Solution: To sketch the graph we have to use the above guidelines.

Let f(x) = x* —4x°
1. Since fis polynomial function its domain is(— 0, OO).

2. i. X- Intercept : solve for x by setting f(x) = 0
x*—4x* =0
= x*(x—4)=0 , this gives us x = 0 or x = 4
Therefore the graph crosses the x-axis at the points (o, 0) and (4, 0)
ii. y —intercepts: isy =f(0) =0
(0, 0) is the y intercept

3.Since lim(x* —4x’) =0 and lim (x* —4x%) = oo, the graph of y has no

X—>00

horizontal asymptote.
And also the limitslim(x* —4x®), lim (x* —4x%), lim (x* —4x®)all exist,
X—>a x—a x—a "’

where ae (— 00,00), the graph of y has no vertical asymptote

188
Addis Ababa University , CNCS



4. To determine the interval in which f is increasing and in which f is
decreasing use ID Test

f'(x)=4x> —12x* = 4x* (x - 3)
f'(x)>0ifx>3and f'(x)<0 ifx <3, since 4x* >0 for all real number x
Therefore, by the ID Test we have:

f is increasing on [3,0) and decreasing on (-0, 3]

5. From example 2 a, above we have found that f has a relative minimum
value at x = 3, i.e. (3,-36) s relative minimum point.

6. Concavity and inflection point(s):
f"(x)=12x* — 24x =12x(x—2)

Use sign chart to see where f”(x) >0and f"(x)<0.

0 2
X e (—oo,O) X e (0,2) Xe (2,00)
12x L gt + ot
+
X-2 o 0— + +
f'(x)=12x(x—2) + o+ B 0— + ot

From the chart above, f”(x)>0 for x €(—,0)U(2,0)and f"(x)<0for x€(0,2)
Therefore by the concavity test, the graph of f is concave up on and concave down on
(—o0,0)U(2,00) and (0,2) respectively.

The inflection points are (2,-16) and (0,0)

7. Observe that:
f(=x)=(—x)" ()" =x* +x°,

Thus f is neither odd nor even function.
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(0,0)

(2,-16)

(3,-36)

The graph of y = x* —4x®

Example 2: Sketch the graph of the following functions
2% X X2

Ly = b.y= L y=
ay X% -1 y (x—1)2 ¢y Jx+1
Solution:
2
a. Let f (x)= 22X 1
X —

i. Domain of f {x: x = *1}
ii. Intercepts

x — Intercept: (0, 0)
y — Intercept: (0, 0)

iii. Asymptotes

Horizontal asymptote:
2

Because lim .

X—=0 ¥ _1

Vertical asymptote:

=2, the line y = 2 is the horizontal asymptote to the curve.
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2
Since lim

x>1* x2 —1

2
=0 and lim

x>-1* 2 —1

asymptotes to the given curve.

iv. Interval or union of intervals for which f is increasing and f is decreasing

—4X
(x -1)

f'(x)=

Sinceforallx;«z&J_rl,(xz—1)2 >0, f'(x)>0ifx<0and f'(x)<0 ifx>0.

Therefore, f is strictly increasing on (- o0,—1)(-1,0) and strictly decreasing on

(01)U(L ).
v. Local extreme values:

From (1V) above, we can see that f ’(X) changes sign from positive to

negative at x = 0. Then by the First Derivative Test f(0)=0 is local maximum

=oo, the lines x = -1 and x =1 are the vertical

value of f and it does not have local minimum value.

vi. The interval for which the graph of f is concave up ward and for which it is

concave down ward.
2
f”(x)= 12x° +4

(e

Since 12x* +4 > 0 for all x in the domain of f; f"(x) > 0if (x2 —1)3> Oand f"(x)<0

if (x2 ~1) <o,

Now use sign chart for (x* —1)3

x-1 - - -

x+1 - - -

Addis Ababa University , CNCS
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From the sign chart above, the graph of y = f(x) is concave up ward on (—o0,~1)U (1, )
and concave down ward on (-1,1)

1y
y=2
= X
- 1
2
The graph of y = 22X
X° -1

2

C. Letyzg(x)z\/%

i. Domain of g = {X:x>-1}

ii. Intercepts:
X - Intercept: (0, 0)
y- Intercept: (0, 0)
iii. Asymptotes:

Vertical asymptote:
2

. X
Since lim =0, the line x = -1 is the vertical asymptote to the graph of
X_)71+m ymp grap

y = 9g(X).
Horizontal asymptote:
2 4
Since lim =lim

X X
X—>00 ,X+1 x>0 \| X +1

= oo , there is no horizontal asymptote to the given

curve.

iv. Interval for which f is increasing and f is decreasing: Use (ID Test).
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_ 3X° +4x _ x(3x+4)

t'(x)

3 3
2(x+1)5 2(x+1)2

Xx(3x+4) 4 4
f'(x)=0 only if ——— = 0. This gives us, x = 0 or X =5 But —isnotin the
2(x+1)2
domain of g. Therefore x = 0 is the only critical number of g.Then using sign chart, we
have

e ‘] 0 N
X - - - € + o+ +
3x +4 + o+ o+ + o+ o+
, X(3X+4) o + + +
9'(x)= 3
2(x+1)2

From the sign chart above we can see that g is strictly increasing on
(0,0) and strictly decreasing on (—1,0) by the ID Test.

v. Local extreme value:
Since g’ changes from negative to positive at x =0, g (0) =0 isalocal
minimum value of g by the First derivative test.

vi. The interval for which the graph of g is concave up ward and concave down
ward. Using quotient Rule for differentiation and simplifying, we get
) 3x* +8x+8
4(x+1)2
Both the numerator and the denominator are positive and hence g”(x)>Ofor x in the
domain of g. Why? Try to explain.
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Therefore, by the concavity Test, the graph of g is concave up ward on {x: X >—1}

2

X
¢x+1

The graph of y =

2.7 Additional problems involving Absolute extrema

FINDING a maximum or a minimum has its application in pure mathematics, where we
could find the largest rectangle that has a given perimeter. It also has its application to
commercial problems, such as finding the least dimensions of a carton that is to contain a
given volume.

Example 1. Find the dimensions of the rectangle that, for a given perimeter, will have
the largest area.

A=xy
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Solution: Let the base of the rectangle be x, let its height be y, let A be its area,
and let P be the given perimeter. Then
P =2x+ 2y,
and
A =xy.

Since we are going to maximize A, we would like to have A as a function only of x. And
we can do that because in the expression for P we can solve for y:
1 1
=—(P-2x)==P—x.
y 2( ) 2
Therefore,

A:X(EP—XJ =1Px—x2
2 2

On taking the derivative of A and setting it equal to 0,

96:EP—2x=O
dx 2
X:EP

4

The base is one quarter of the perimeter. We can now find the value of y.
1 1
=—(P-2x)==P—X
y 2( ) 2

1. 1_ 1 1
y=—P—-—P=—P because x=—"P.
2 4 4 4

The height is also one quarter of the perimeter. That figure is a square! The rectangle
that has the largest area for a given perimeter is a square.

Note: The value we found is a maximum, because the second derivative is negative.

All maximum-minimum problems follow this same procedure.
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i. Write the function whose maximum or minimum value is to be determined.
(In the Example, we wrote A = xy.)

ii. The resulting expression will typically contain more than one variable. Use the
information given in the problem to express every variable in terms of a single
variable. (In the Example, we expressed y in terms of x.)

iii. Find the critical value of that single variable by taking the derivative and
setting it equal to 0.

(In the Example, we took the derivative of A with respect to x.)

iv. If necessary, determine the values of the other variables.
(In the Example, we evaluated y by substituting the critical value of x).

In the following, notice how we follow these steps.

Example 2: A box having a square base and an open top is to contain 108 cubic feet.
What should its dimensions be so that the material to make it will be a minimum? That
is, what dimensions will cost the least?

V = x%y

Solution: Let x be the side of the square base, and let y be its height. Then
Area of base = x*

Area of the four bases = 4xy

Let M be the total amount of material. Then

M = x? + 4xy

Now, how shall we express y in terms of x?

We have not yet used the fact that the volume must be 108 cubic feet. The volume is
equal to

X%y = 108
Therefore,
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108 ) )
y= & and therefore in the expression for M

4xy:4x.£:@
X X
M =2 4+ 232
X
dM 432
—=2X——=0
dx X2

This implies, on multiplying through by the denominator x?

2x3 —432=0
x} =216
X =6 feet

We can now evaluate y

108 108

<
I

g
I

The dimensions that will cost the least are 6 feet and 3 feet.

Example 3: Find the dimensions of the rectangle of maximum area that can be inscribed

in a circle of radius r. Show, in fact, that area will be 2r 2.

Solution: First, it should be clear that there is a rectangle with the maximum possible

area.

2r

Let A be the area of the rectangle with length x and height y.

A=xy
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X* +y? =(2r)2 = 4r?
y =+J4r? —x2
A=xy =x\4r? —x*

dA N 2x2
el | e —
dx 244r2 — x?

d—A:O:>8r2—4x2 =0
dx

Solving for x in terms of r we get X = rv2 and hence y= rv2
Therefore, A=xy = r\/E(r\/E): 2r 2,

Example 4: Find the dimensions of the rectangle with the most area that can be
inscribed in a semi-circle of radius r. Show, in fact, that the area of that rectangle is r2.

X
2 2
Let x be the base of the rectangle, and let y be its height. Then, since r is the radius:

X2

X ov2 =2
5 y
= X° +4y® = 4r?

1
Therefore, Yy :Ex/4r2 —x?

Let A be the area we want to maximize. A = xy. That s,

A= %x«/4r2 — X
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According to the product rule:

A= 1x.iJrl»\Mr2 —x?
2 2Jart—x2 2

On setting this equal to 0 and multiplying through by 2+/4r? — x?

—X* +(4r* —x*)=0

This implies:
x* =2r?
x=+/2r

This is the base of the largest rectangle. As for the height y

y=%\/4r2 —2r?

y= 1\/2r2 :ﬁ r
2 2
The area of this largest rectangle, then, is

N7

xy=\/§r.72r:r2

Example 5: Minimizing time of travel.

A vehicle is on the desert at point A located 40km from a pint B, which lies on a long,
straight road, as shown in the figure. The driver can travel at 45km/hr on the desert and
75km/hr on the road. The driver will win a prize if he or she arrives at the finish line at
point D, 50km from B, in 84 minutes or less.

What route should the travel to minimize the time of travel?

Does the driver win the prize?
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Present Location

Destination

Solution: suppose the driver heads for a point C located x km down the road from B
toward the destination as shown in the figure.

We want to minimize the time.

We know that:

Distance traveled = Velocity x time taken

c — 9
v

x> +1600 50— X
T(x)= 5 75

But by Pythagoras’s Theorem, distance from A to C is y/X° + (40)2 =/x* +1,600

Time, t = time from Ato C + time from C to D

_ Distance from A to C dlstan ce from Cto D
VeI00|ty from Ato C VoIOC|ty from C to D

and the distance from C to D is 50 — X, where X is the distance from B to C.

x* +1,600 N 50— x
45 75

The domain of T is [0,50].

Therefore, T(x)=

200
Addis Ababa University , CNCS



Let us find T'(x)

1 2x 1
T'(X)= | ————— |+ (-1
) 45 Zw/x2+l600] 75( )

T)-—| — % |- L
45| 45,/x? +1,600 ) 75

T'(x) exist for all values of X, and

rg-om k[ X |1
45 45«/x2+1,600 75

X 45 3

- = =
x?+1600 75 5

— 5x = 3y/x? +1,600
= 25x2 = 9(x? +1,600)
= 16x° = 9x1,600

L2 _ 0XL600
16

=900

= X =++/900 =+£30
Thus the only critical number is 30 (-30 is extraneous).

Evaluate T at 0, 30 and 50, we will get:

2
T(0)= YO *1000  S0=0 _; sesehr~ 93min.
45 75
2
T(30)= VB #1600 50-30 _ 200 res < gamin.

45 75

2
T(50)< V(50) #1600 507‘550 ~1.4229hr ~ 85min.

45
The driver can minimize the total driving time by heading for a point that is 30 miles
from the point B and then traveling on the road to point D.

The driver wins the prize because this minimal route requires only 83 minutes.
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EXERCISE ON APPLICATIONS OF DERIVATIVE
1. Find an equation for the tangent and the normal line to the graph of

1 :
f(x) = ;at the point where x = 2.

2. a. Find the derivative of f (x)=x*—-3x

b. Show that the parabola whose equation is y = x? - 3x has one horizontal
tangent line. Find the equation of this line
c. Find a point on the graph of f where the tangent line is parallel to the line
x+y=11

3. Verify that for the given function f satisfies the hypothesis of the MVT, on the
indicated interval [a, b] .Then find all numbers ¢ between a and b for which

f(b)-f
% = f'(c), if the hypotheses are satisfied.
a. f(x)=vx , [14] b. f(x)=3x"+2x+5, [-11]

c. f(x)=1Inx, Bz} d.f(x)=3x-1, [-88]

4. Let T (x)=(x—1)". Show that (0)= f(2) but there is no number c in
(0, 2) such that f'(c)=0.Why does this not contradict Rolle’s Theorem?

5. Suppose that 3< f'(x) <5 for all values of x. Show that18 < f (8)— f(2)<30.

6. Find the critical numbers for the given functions.
a. g(x)=+/x(1-x)

b. f(X) = 4x> - 5x° - 8x + 20

7. Find the absolute extrema of the function defined by the equations on the
given interval

a fx)=x*-2x*+3, [-1,2].

b. g(t) = (50 + t)**, [-50, 14]

8. A box with a square base is constructed so that the length of one side of the
base plus the height is 10 in. What is the largest possible volume of such
a box?

Addis Ababa University , CNCS

202



9. Find the critical number(s) for function f(x) = 5 + 10x - x* on [ 3, 3]
and then tell whether each yields a minimum, maximum, or neither for
the function

10. Find two numbers whose sum is 42 and whose product will be the largest.

11. 1200cm?of material is available to make a box with a square base and an
open top, find the largest possible volume

12. A painting is in an art gallery has height is and is hung so that its lower edge
is a distance d for the eye of an observer (as shown in the figure).
How far from the wall should the observer stand to get the best view?
(Or where should the observer stand so as to maximize the angle

0 subtended at his eye by the painting?
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CHAPTER 3: Revision on Integration

In chapter 3, we have seen how to find the derivative of a function at a point and at an
arbitrary point in its domain. If we think of discovering a function knowing its derivative,
we are reversing the process of differentiation which is known as anti- differentiation or

integration.

Integration can be used to solve physical problems, such as how long it takes for a sand
bag to fall to the ground when dropped from a balloon.

Specific objectives: After the completion of this chapter, the students will be able to:
- Find the anti- derivative F of a continuous function f.

- Use the general power rule, Exponential rule, Logarithmic rule together with limit laws
to calculate anti- derivative.

- Find lower sum and upper sum of a continuous function on [a, b] associated with a
given partition.

- Evaluate definite integral using the different techniques of integration.
- Calculate the area bounded between two curves

- Use integration to find volume of solids of revolution

3.1 Antiderivatives

Up to this point in the module, we have been concerned primarily with this problem:
given a function, find its derivative.

Many important application of calculus involve the inverse problem: given the derivative
of a function, find the function.

A physicist who knows the velocity of a particle might wish to know its position at a
given time. A biologist who knows the rate at a bacteria population is increasing might
want to deduce what the size of the population will be at some future time.

| each case the problem is to find a function F whose derivative is a known function f. If
such a function F exists, it is called an antiderivative of f.

Definition of antiderivative: A function F is an antiderivative of a continuous function

fon an interval 1 if F'(x)= f(x) for all x in I.




Theorem 4.1: If F is an antiderivative of f on an interval I, then F(x) + c is also an ant
derivative of f on I, where c is arbitrary.

Proof: Suppose F is an antiderivative of fo I, i.e. F'(x)= f(x)

Then we want to show that F(x) + c is also an ant derivative of f on I.

’ !

(F(x)+¢) =F'(x)+(c) =F'(x)= f(x), by sum rule for differentiation.
Hence F(x) + c is also an antiderivative of f for all x in I.

For example, F(x)=x%, G(x)=x*+~/2, H(x)=x*+7 are antiderivative of 3x?
because the derivative of each is3x? .

As it turns out, all anti derivatives of 3x* are of the formx® +c.

Note: The process of antidifferentiation does not determine a single function, but
rather a family of functions, each differing from the other by a constant.

Example 1: Find an antiderivative of each of the following functions.

a) f(X)=4 b) g(X)Z—SinX c) h(x):%

d) f(x)=x"for n=-1

Solution: a) since the derivative of F(x):4x+c ,where c is an arbitrary constant is 4. So
the antiderivative of f(x)=4 is F(x)=4x+c.

!

b) Since(cosx+c) =—sinx, the antiderivative of f(x)=-sinx is F(x)=cosx+c
d 1 . . 1
c) Recall that&(ln X)= o So, on the interval (0,0)the antiderivative of "

is Inx + c.
We can also see that:

d 1
—(|x{+c)== forallx=0.
dxq ) X
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o 1.
Therefore the antiderivative of v In|x|+ ¢ for all x =0,

Inx+c, for x>0

In(Cx)+c, for x <o 18 the antiderivative of f (x)=

That is, F(x):{

X |~

d) We use the power rule for differentiation to find an antiderivative of x" .

If n=-1, then

n+l
d(x =(n+1)Xn=xn
dx\ n+1 n+1

n+1

Therefore, the antiderivative of f(x)=x" is F(x)= >

+c, forn=-1 .
n+1

3.2 Indefinite Integrals

The antidifferentiation process is also called Integration and is denoted by the symbol
I which is called an integral sign.

The symbol jf(x)dx is the indefinite integral of f(x), and it denotes the family of

antiderivative of f(x). That is if F'(x): f (x) for all x, then we can write:
J f (x)dx = F(x)+c where, f(x) is the integrand and c is the constant of integration.
The differential dx in the indefinite integral identifies the variable of integration.

That is the symbol I f(x)dx denotes the “antiderivative “of f with respect to x.

Integral Notation of Antiderivative

Notation:j f(x)dx = F(x)+ c, where c is an arbitrary constant, means that F is an

antiderivative of f.
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Finding Antiderivatives:

The inverse relationship between the operations of integration and differentiation can be
shown by symbolically as follows.

] rxm)= 10

Differentiation is the inverse process of integration.

Proof: Let _|' f (x)dx = F(x) + ¢, where F(x) is an antiderivative of f, then

%({ f(x)dx)=%(F(X)+C)= F'(x)= f(x)

.[ f ’(x)dx = f(x)+ Cc Integration is the inverse process of differentiation.

3.3 Some Integration Formulas

1. [kdx = kx+c , where ¢ and k are constants ~ (Constant Rule)
2. [kf(x)ax=k[ f(x)}x  (Constant Multiple Rule)

3. [(F()+g()ax = [ f(x)dx+ [g(x)dx  (Sum Rule)

4. [(£(x)-g(x))dx = [ f(x)dx— [g(x)dx  (Difference Rule)

n+1

X

+cif n=-1 (Simple power Rule)
n+1

5. Ix"dx=

Table of Indefinite Integral
Icos Xdx =sinx+c

Isin XdX = —CcosS X+ cC
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J'sec2 xdX = tan X +¢
I(‘scz xdX = —cot X+ ¢
Isecxtan xdX =secx+cC
Jcscxcot xdX =—csCXx+cC
Jédx =In|x +c

X

a
jaxdx: +C

Ina

Remark: Every two antiderivative of f(x) differ by a constant.

Example 1: Find the indefinite integral I3xdx

2
Solution: _[3xdx = 3.[ xdx = 3()(?J +C

Note the general pattern of integration is similar to that of differentiation.

Original integral Re write
I3xdx = 3I x'dx
Integrate Simplify
2
= c A I = 3
2 E X2 +C

Example 2: Rewriting before Integrating

Find each of the following integral
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a) I%dx b) J‘S{/?dx C) _[XT;ldx

Solution:
a) Original integral Rewrite Integrate Simplify
J'idx jx‘3dx ﬁ+c e
x° -2 2x?
b) Original integral Rewrite Integrate Simplify
2
2 w3 3 3
J.de jxe'dx 3 +C gx5+c
2 +1
3
c¢) Original integral Rewrite as sum  rewriting using rational exponent
X+1 x 1 > 2
—dx —+—=|dx X2 +x2)dx
1% (%5 Jotex®)
Apply power rule Simplifying
34 1
2 2
AR E\/F +24x+c
3 1 3
—+1 -
2 2
Example 3: Find the indefinite integral of
5
a) J.(Bx4 —5x° — X+ 4)dx b) J.(\/Exf‘ — 2sec? dex

Solution: a) Use the sum rule to integrate each part separately.

I(:%x4 —5x%3 —x+4)dx :3Ix4dx—5jx3dx—jxdx+4jldx
=3(%5j—5()(7:j—x—22+4x+c
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3 2 v Layae
5 4 2

b) Use the difference rule to integrate each part separately
5 5
J.(\/Ex3 —2sec’ dex = \/Ej.xi’*dx - 2J.sec2 xdx

8
3
:ﬁ%—ZtanXJrc

3

32 ¢

=N 3 _2tanx+c
8

COS X
Example 4: Evaluate Imdx

Solution:

COS X 1 (cosx
I — X = | —| —— |dx
sin© x sin X \_sin X

=fcscxcotxdx=—cscx+c

Key Concepts

© If f(x) is continuous on [a, b] and F'(x)= f(x) for all x € (a,b), then the set of all
antiderivative of f is called an Indefinite Integral of f and denoted by

I f(x)dx = F(x)+c
In fact, every anti derivative of f(x) can be written in the form F(x)+c,

for some c.

9 F00)= 100 = [ (k= (o)

210
Addis Ababa University , CNCS



—(9(x)=9'(x) = [g'(x)dx = g(x)+c

3.4 Techniques of Integration
3.4.1 Computing Integrals by substitution

Many integrals are most easily computed by means of a change of variables, commonly
called a u — substitution.

Example 1: Compute IZx(x2 ~1) dx

Solution: Let’s us compute the integral by making the substitution
u=x?-1,du = 2xdx. Then

.|.2x(x2 ~1)'dx = J.(x2 —1)2xdx

5

:Iu4du =u—+c:1(x2 —1)5 +C
5 5

We may check this by differentiation using the Chain rule.

d(1l/, .y 5(, . s A\

—| =\x"=1) +c |==(x"-1) 2x =2x|x" -1

o360 - ve)=Ble 1) ax-2d -

The substitution method amounts to applying the chain rule in reverse.
To computej f(g(x)).g’(x)dx , we let

u=g(x), du=g'(x)dx . Then we get:

If X)dx = I u)du = F(u)+c =F(g(x))+c, where F is an anti derivative of f
and cis an arbltrary constant.

Example 2: Evaluate Isin(Zx)cos(Zx)dx

Solution: Let u =sin(2x)
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du = 2cos(2x)dx (cos(Zx)dx = %duj
Then

i “futdu=L(udu=Lu
jsm(Zx)cos(Zx)dx = Iu. > du = 2Iudu =gut+e

1.,
= Zsin?(2
sin®(2x)+c¢

+2) |
VX? +4x

Solution: Let us use substitution method.

Example 3: Computej

Letu = x* +4x . Then du = (2x+4)dx = 2(x + 2)dx

%du = (x+2)dx

en, [ 042 g _12 ”—_ju‘idu

VX2 + 4x
1 1
:_£2u2j+c:\/x2 +4X +¢C

2

+2) e
Therefore, I dx =+/x"+4x +cC
VX% +4x

Remark: it is not always apparent until you try it whether or not a substitution will work.

Example 4: Evaluate J'x\/x—3dx

Solution: To compute J'x\/x—3dx , we will try:

u=Xx-3, thisimpliesx=u+3

du = dx
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So, [ xa/x 3 = [ (u+ AU du = [(u+ 3udu

3 1
=j[u2 +3u2jdu

s 3
:gu3 +2u2 +c¢

:é(x—3)2+2(x—3)2+c

We can compute a definite integral using a substitution.

Example 2: Find I\/1+ X% x°dx

Solution: An appropriate substitution becomes more obvious if we factor

x°as x*.x

Let u =1+ x?
Then, du = 2xdx, so %du = xdx

x*=u-1,s0x" = (u-1)° =u®-2u+1

Then,

J'1/1+ X2 x°dx :Iw/1+ x? x*.xdx
:IJU(UZ —2u +1)%du

2
7 5 3
L 3u2—2.3u2+3u2 +C
2\ 7 5 3
1 7 5 3

=7(1+ x2)5 —%(1+ xz)E +%(1+ x2)2 +C

Example 3: Evaluate _[tan xdx

Solution: First we write tanx in terms of sinx and cosx
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sin X

jtan Xdx = I

coS x
Then, substitute:
U = cosx

Du = -sinx dx, so —du = sinx dx

ftan xdx = Jﬂd = .[Edu =—Inju|+¢c
COS X u
=—Incos x|+ ¢
Since — In|cos x| = Ichos x|17): In——{ = In|sec X,
COS X

We have: .[ tan xdx =Injsec x| +c

Key Concept
. The substitution method: If u = g(x) is a differentiable function and whose range is an

interval | and f continuous on I, then,

If X )dx = I u)du = F(u)du = F(g(x))+C, where F isan anti — derivative of f

3.4.2 Integration by Parts

We will use the Product Rule for derivatives to derive a powerful integration formula:

(f(x)g(x)) = (x)g'(x)+ F*(x)g(x)

Start with

f(x)g(x)= j f(x)g"(x)dx + j f'(x)g(x)dx

Integrate both sides
(We need not include a constant of integration on the left, since the integrals on

the right will also have integration constants).
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Solve for [ f(x)g'(x)dx , we get:

If(x)g (x)dx = f(x _[f g(xx.

This formula frequently allows us to compute a difficult integral by computing a much

simpler integral. We often express the integration by parts formula as follows:
Let

u=f(x) dv = g'(x)dx
du = f'(x)dx, v=g(x)

To integrate by parts, strategically choose u, dv and then apply the formula.

Example 1: Evaluate [ xe*dx

Solution: Let
u=x dv = e*dx
du = dx u=e*

Then by integration by parts,
J'xeX = xe”* —Iexdx

=xe* —e* +C.

Sometimes it is necessary to integrate twice by parts in order to compute an integral:

Example 3: Compute _[ex Ccos x dx

Let
u=e* dv = cos xdx
du = e*dx V =Sin X
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Thenjexcosxdx=exsinx—'[exsin xdx Q)

It is not clear yet that we have accomplished anything, but now let’s integrate the integral
on the right-hand side by parts:

Now let

u=e* dv = sin xdx
du =e*dx V =CO0S X

So,J‘eX sin xdx = —e* cos x +J‘eX oS Xdx

Substituting this into (1) , we get:

jex cos xdx =e*sin x — l—ez COS X + Iexcis xde
=e*sinx+e” cosx—J.eX Cos Xdx.

The integral J.ex cos xdx appears on both sides of the equation, so we can solve for it:

2.[eX cos xdx = e* sin x + e* cos x.

Finally,

) 1, . 1,
je cosxdx:ze smx+5e cos x+C.

Key concept
judv = uv—.[vdu.
Choose u, dv in such a way that:

1. uis easy to differentiate

2. dv is easy to integrate.

3. Ivdu is easier to compute than J'u dv

Sometimes it is necessary to integrate by parts more than once.

3.4.3 Integration by partial Fractions
Integrals which involves rational fraction for which substitution method is not convenient

can be integrated by the method of integration called integration by partial fraction.
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Example 1: Consider the integral

3x® —2x* —19x -7
I . dx.
X°—X-6
The integrand is an improper rational function. By “long division” of polynomials, we

can rewrite the integrand as the sum of a polynomial and a proper rational function

“remainder”

W —x—6 : 3x2+1

3X° —=2x° =19x -7

3x® —3x? —18x

x> —x-7

x> —X—6

-1
3x*—2x% —19x -7 -
dx = (Bx+1+ dx.

I x> —X—6 I( xz—x—6)

This looks much easier to work with! We can integrate 3x+1 immediately, but
What about 2_—1?
X*—=Xx—6
Notice that:
-1 -1
x2—x-6 (x+2)x-3)

. . -1 .
which suggests that we try to write 7 6 as the sum of two rational
X —X—

functions of the from A and B
X+2 X—3

-1 ___A B
x> —x—6 Xx+2 x-3

This is called the partial Fraction Decomposition for 2_—16
X*—X—

Our goal now is to determine A and B. Multiplying both sides of the equation by
(x +2) (x - 3) to clear the fractions,

~1=A(x—3)+B(x+2)
There are two methods for solving for A and B:

Method 1 Method 2
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Collect like terms o the right:

-1 = (A+B)x + (-3A+2B)
Now equate coefficients of
Corresponding powers of X:
A+B =0, -3A+2B=-1

Solving this system,

The equation holds for all x.
Letx =-2:
-1=A (-2-3) +B (-2 + 2)
-1=-5A = A =1/5
Now let x = 3:
-1=A(3-3) + (3+2)

A=1/5 B =-1/5 -1=5B = B=-1/5
So

-1 _1/5 1/5
x—x6 x3x3

Returning to the original integral,

IBXS_ZXZ —19X—7dx I(3X+l+ [v5] Mde

X2 —x—6 X+2 x-3

—I3x+1)dx+ Imd —= ﬁdx

_3y +x+£|n|x+2|—lln|x—3|+C
2 5

X+2
X—3

2

:Ex + X+ —In +C.
2 5

In the next example, we have repeated factors in the denominator, as well as an

irreducible quadratic factor.

Example2:Evaluate jﬁ%)dx
X2 (X2 + x+

The integrand is a proper rational function, which we would like to decompose into
proper rational functions of the form

A B Cx+D

— —and ————

X X X°+x+1

[Notice that we have two factors of x in the denominator of the integrand, leading to

terms of the form éand Ezin the decomposition. The factor x> + x +1is irreducible and
X X

quadratic, so any proper rational function with x*+ x +1 as denominator has the form
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Cx+D
X% +x+1

Set x—1 _é+E+ Cx+D
xzix2+x+1i X xX* xXP4+x+1

Multiplying throughout by xz(x2 + x+1),

where C or D may be zero.

X—1= AX(X? + X +1)+ B(x? + x+1)+ (Cx + D)X
Since x* + x +1 has no real roots, it is easiest to solve for A and B using Method 1:
collecting like terms on the right,

Xx—1=(A+C)x*+(A+B+D)x* +(A+B)x+B

Equating corresponding powers of X,

A+C=0 A=2
A+B+D=0 =-1
A+B=1 =-2
B=-1 D=-1
1 2 1 2x+1

So

:2In|x|+1—ln‘x2 +x+ﬂ+C
X

X2

X2 +x+1

1
=—+In
X

+C.

To see how the Method of partial fraction works in general, let’s consider a rational

function f (x)= M where P and Q are polynomial functions.

Qx)
If fis proper (Degree of P < Degree of Q), then we can express f as a sum of simpler
fractions.

If f is improper (Degree of P > Degree of Q), follow the following steps.
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Stepl: Divide P by Q using long division, until a remainder R(x) is obtained such that

Degreeof R <Degreeof Qand write f(x) as:
P(x) R(x) .
f(x)=—==S(X)+—= (1), where S and R are also polynomials
ST AT

Step 2: Factor the denominator Q(x) as far as possible.

Step 3: Write the proper rational function @ (of equationl) as a sum of

Q(x)
Partial fraction of the form

A or Ax+B
(@x+b)" * (ax? +bx+c)'

Now we have to consider the following four possible cases:
Case 1: The denominator Q(x) is a product of distinct linear factors.

This means we can write:
Q(X) = (alx + bl)(aZX + bz )__ - (amx + bm)

And then
R(X)= A + A +———+L, 2
Q(x) ax+b a,x+b, a, x+b,

Where A; A, .. Ay are constants to be determined.

2 —_—
Example 1: Evaluate _[2); +32)2( 12 dx
X° +3X° —2X

Solution: since the fraction is proper begin by factoring the denominator
2% +3x% — 2x = X(2x? +3x — 2) = x(2x —1)(x + 2) (Distinct linear factors)
Then the partial decomposition has the form:

X% +2x—1 A B C
2x3+3x2-2x X 2x-1 Xx+2

To determine the values of A, B, C, we multiply both sides of this equation by

X (2x-1)(x+2), obtaining:
X2 +2x—1= A(2x—2)(x + 2)+ Bx(x + 2)+ Cx(2x - 1)
=x? +2x-1=(2A+B+2C)x* +(3A+2B-C)x—2A
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Equating like powers of X, we get:

2A+B+2C =1

3A+2B-C =2

-2A =1
Solving, we get E,B :l,c 1

2 5 10

So
J~x +2X — 1 _J~ 1 i
2x% +3x? 5(2x — 1) 10(x +2)

:—In|x|+—In|2x—]j—iln|x+2|+ D
2 10 10

Case 2: Q(x) is a product of linear factors, (a;x + by) is repeated K times in the

factorization of Q(x). Then instead of the single term A
ax+b,
A + A 5 +———+Lk (3)
ax+b,  (a,x+b,) (a,x+b,)
Example 2: Evaluate ILXaldx
X=X

X + X

Solution: The rational unction f(x) = 4—_31 is improper.
X

By long division, we have:

5 3
X +x—1:(x+1)+x +x-1

x4 —x3 x4t —x3

Now applying, partial fraction decomposition procedures.

x3+x—1 X3 4+ X — 1 A B E D
2x - X(x-1) x x* x* x-1

Multiplying both sides by the least common denominator x*(x —1)produces
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x® +x—1= Ax?(x —1)+ Bx(x —1)+ C(x —1) + cx®
= x*+Xx-UZ+D)x* +(- A+B)x* +(-B+C)x-C

This gives the system of equations:

A+D=1
-A+B=0
-B+C=1
-C=1

Solving, we obtain,

A=0,B=0,C=1,D=1
X*+x-1_1 1
3

xf=x® X} x-1

Case 3: Q(x) contains irreducible factors, none of which is repeated.

If Q(x) has the factor ax’* .+ bx + C, where b? —4ac <0, in addition to the partial

R(x)

fraction in equation (2) and (3), the expression for WX) will have a term of the form
X

Ax+ B
ax® +bx+c’
The integral in (4) can be integrated by completing the square and using the formula:

(4) where A and B are constants to be determined.

I 2dX > :itanl[§j+c
x*+a® a a

2 —
Example 3: Evaluate szs—);“ldx
X +4x
222
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Solution: Since x® + 4x = x(x2 + 4) can not be factored further, we write

2x>—x+4 A Bx+C
—:_+
X3 +4x X XxX2+4

Multiplying by x(x2 +4), we have:
2X2 —X+4 = A(x2 +4)+Cx+4A

Equating coefficients, we get:

A+B=2
C=-1 =A=1B=1C=-1
4A=4

Then,
2_ —
J~2X2 X+4dx:I(1+ )Z 1jdx
X +4X X X°+4
1

:j%dx+sz):_4dx—fx2+4

dx

- jln|x|+%ln(x2 +4)—%tanl(§j+ D

Case 4: Q(x) contains repeated irreducible quadratic factors:
This is left as an exercise for the students.
Key Concepts
Partial Fraction Decomposition of a Rational function
e If the rational function is improper, use “long division” of polynomials to write
it as the sum of a polynomials and a proper rational function “remainder”
e Decompose the proper rational function as a sum of rational functions of the
form
A

(x-a)"

and

Bx+C

m (x2 + X4y irreducible)
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. Where:
Each factor (x—a)" in the denominator of the proper rational function

suggests terms

A A, Ay

A_a+(x_a)2 +...+(X_a)m

Each factor (x2 + X+ 7/)” Suggests terms
B x+C, N B,x+C, - B,x+C,

(X2+ﬁx+7) (x2+,6’x+7/)2 T+ e+ y)

Determine the (unique) values of all the constants involved. Use either Method 1 or
Method 2, or a combination of both.

The partial fraction decomposition is often used to rewrite a complicated rational function
integrand as a sum of terms, each of which is straightforward to integrate an integral after

being rewritten in this form.

3.5 Definite Integral

Definition: A partition of [a,b] is a finite set p of points X,, X, X,,X;,...X, such that

a=X, <X <X, <..<X,=Db

We denote it by writing p = {X,, X, X,, X,..., X, |-
By definition any partition of [a, b] must contain both a and b.
Except a and b, the number of point and their placement in [a, b] is arbitrary.

The n subintervals in to which partition p = {X,,X,,X,,%,,....,X,} divide [a, b] are:

[XO’Xl]' [Xl,XZ]’ [XZ,X3] v [Xn—l1xn]-
The length x, —x,_, of the k" subinterval [x, ,,x, ] is denoted by Ax,
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H AX, = X, — X4 H

. 1
Example: For the partition {0,5,1,2,2} , we have

AX, = AX; = AX, = AX; = AX, :%

Now, let f(x) is continuous and none negative on [a,b]
Let p = {X,,X,,%,,Xs,..., X, } be a given partition of[a,b].

Then the Maximum- Minimum Theorem implies for each k between 1 and n there exist
smallest value m, and largest value M, of f on the k™ subinterval.

Based on this we have the following definition.

The lower sum of f associated with p is given by:
L, ()= mAX, + M,AX, +...+ M, AX,

The upper sum of f associated with o is given by:
U, (p)=M,AX, + M,AX, +...+ M AX,

Example 1: Let f(x)=x* for0<x<2,

Then find L, (p) and U (o) for the partition p :{0,%,1,

N w

.
Solution: The subintervals associated with p are:

{Oﬂ , B ,1} , {1%} ; BZ} . Computing the maximum and the minimum values of f

on each of this subinterval, we obtain:
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.- 1)

values of f.

%,Mzzf(l):l,MS:f(EJ:%,M4=f(2)=4 are the maximum

AxXg = AX, = AX, = AX, = AX, =%
L, (p)=mAX, +mM,AX, +M,AX, + M4AX,
1
:E(m1+m2+m3+m4)
=1(0+l+1+gJ=z
2\ "4 T 4) s
Uf(P):MlAX1+M2AX2+M3AX3+M4AX4

:%(M1+M2+M3+M4)

:1(1+1+g+4 :E
2\ 4 4 4

Therefore, the lower and the upper sum of f associated with the partition of p are

respectively ! and L
4 4

Example 2: compute the lower sum and the upper sum for f(X)= cos x on the partition

D BN
P=17376""6'3

Solution: The subintervals associated with p are:

55) e Pl 54
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Computing the maximum and the minimum values of f on each of these subintervals, we
found that:

AX, = A%, = AX, = AX, = AX, :%
Then,
L, () = mAX, +m,AX, +mMAX, + M4AX,

:£(1+£+£+£]=z(1+\/§)
6(2 2 2 2 6

U, (p)= M,AX, + M,AX, + M,AX, + M ,AX,

2

= £[£+1+1+£J=Z(Z+\/§)
6 2 6

Therefore, the lower sum and the upper sum of f associated the given partition o are

respectively %(1+ \/5) and % (2 + \/5)

3.5.1 Riemann Sum

Suppose that a function f is continuous and nonnegative on an interval [a,b]. Let’s us

compute the area of the region R bounded above by the curvey = f(x), below by the x-
axis on the sides by the lines x =aand x = b.
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We will obtain this area as the limit of a sum of areas of rectangles as follows.

First divide the interval [a,b] in to n subintervals

[0, %], X% |0 [%o Xs ] s s [0y X, ] Where,a=x, <%, <X, <..<X, =b.

The intervals need not all be the same length, so call the lengths of the intervals

AX, AX,, AXy ..., AX, respectively.

This partition divides the region in strips.
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f

¥= LX)

Next let us approximate each strip by a rectangle with height equal to the height of the
curve y = f(X) at some arbitrary point in the sub interval. That is for the first interval

[%,, %] select some x," contained in the sub interval and use f(x,”) as the height of the
first rectangle. The area of that rectangle is then becomes f(xl*) AX, .

Similarly for each subinterval [x,_,,x,] we choose some X;" and calculate the area of the

corresponding rectangle which is given by f(xi*) AX; .

The approximate area of the region R on [a, b] is the sum Zf(xi*)Axi of these

i=1
rectangles.

Depending on what points we select for X;” , our estimate may be too large or too small.
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For example, if we choose each X;" to be the point in its subinterval giving the maximum
height, we will overestimate the area of R (This is called an upper sum of f) .

If on the other hand, we choose each X,” to be the point in the subinterval giving the
minimum height, we will under estimate the area of R. (This sum is call the lower sum of

f).

n
When the point ;" is chosen randomly, the sum > f(xi”‘)Axi is called Riemann sum and
i=1
will given an approximation for the area of R that is in between the lower sum and the
upper sum> The lower and the upper sums may be considered as a specific Riemann
sums.

As we decrease the width of the rectangles we expect to be able to approximate the area
of R better. In fact as Ax, -0 , we get the exact area of R which we denote by the

definite integral _[: f (x)dx.

mas, | 110 i (S o0

Remark:

This definition of definite integral still holds if f(x) assumes both positive and negative
values on [a, b]. It even holds if f(x) has finitely many discontinuities but is bounded.

Key Concepts

Let f be continuous on [a, b] and let X,, X, X, ..., X, be a partition of [a, b].

Foe each[x,,,x;] , let ;" be in[x_,,x ], then the definite integral of f over [a, b] is
defined by:

[ t0ax=_lim [z f(x )Axij

i=1
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If f(x)z 0 forall x in [a, b] , then the definite integral of f on [a, b] represents the area
of the region under the curve y = f(x) on the interval [a,b].

3.5.2 Properties of the definite Integrals

1. Identical limits of integration

[ (x)dx=0

a

2. Interchanging the limits of integration

a b
Ib f(x)dx = —L f (x)dx
1. The integral of a constant function f(x) = c is the constant times the length of

the interval.
b
L cdx =c(b—a)
4. The Integral of a sum is the sum of the integrals
b b b
L (f(x)+g(x))dx = L f(x)dx + L g(x)dx (Sum Rule)

5. The integral of a constant time a function is the constant times the integral of a
function.

b b
L cf (x)dx = CL f(x)Jdx  (Constant multiple Rule)
6. The integral of a difference if the difference of the integrals.

Ib(f (x)— g(x))dx = _[j f (x)dx — _[: g(x)dx (Difference Rule)

a

7. .Lc f(x)dxj;b f(x)dx = I: f (x)dx , where c is any number between a nd b.

Proof: Only the proof of property 4 is given.

Following the same procedure try to prove the remaining properties.
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By definition,

n—

[ (£ (x)+ g(x))aix = lim Z(f )Ax]

= lim Zn:f JAX, +Zg }

n—o

= j: f(x)dx + j: g(x)dx

= lim Z f(x, AX, +ngg(xi )AX

Comparison Property of the integral
8.1f f(x)>0 for a<x<b, thenf X )dx > 0

9. 1f f(x)>g(x) for a<x<b j: f(x)dxzj:g(x)dx

b

10. Ifm< f(x)<M for a<x<b, then m (b—a)<|

a

f(x)dx <M (b-a)

Proof of property 10:

Sincem< f(x)<M for a<x<b, property 9 gives us:
b b b
L deSL f(x)dx < .L M dx
m(b—a)< .[: f(x)dx <M (b—a) by property 3.

Example 1: Ifj x)dx =17 and.[ x)dx =12 , then find I

Solution: By property 7, we have:

j: f(x)dx + J:O f(x)dx = Ll °f (x)dx
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= _Llo f(x)dx = 010 f (x)dx—jo8 f(x)dx =17-12=5
Example 2: Estimate the value ofﬁe’xz dx .

Solution: Because f(x)=e™ is a decreasing function on [0, 1], its absolute

maximum value is M = f (0) = 1 and its absolute minimum value is
m=f(1)=e".

Thus by property 10, we have
Li-0)< [ e dx<1(L-0)=1, that is T < [erdx<t.
e ’ e

3.5.3 Fundamental Theorem of Calculus

Fundamental Theorem of Calculus, Part I (FTC 1):

X

f (t)dt

(0

Let f be continuous on [a, b], then the function g defined by g(x)=

a<x<bis continuous on [a, b] and differentiable on (a, b) and g'(x)

Proof: If xand x + h are in (a, b), then

9(c+h)—gx)= [ (Dt~ [ (ot

g(x+h)-g(x)=|

.f " (t)dx + Lxm i (t)dt) - '[: f (t)dt by property of definite integral

a

And so, for h= 0, we have

h h

g(X + h)_ g(X) _ 1 J‘Hh f(t)dt

For now let us assume h > 0. Since f is continuous on [x, x+h] by the Extreme Value
Theorem, there are two numbers u and v in [x, x+h] such that:
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f(u)=m and f(v)=M where m and M are the absolute maximum and the absolute
minimum values of f on [ X, x+h ].

By property integrals, we have:

X+h

mhsj

X

ft)dt<Mh

= fuh< [ f(t)dt< F(v)h

X

Since h > 0, divide this inequality by h.

= f(u)< ijx”“ Ft)dt< f(v)

= f(u)< glx+h)-gx) f(v) (—g( :—rh (t)dt)

Now ash — 0, then u — x and v — x since u and v lie between x and x+h.

Therefore,

lim f(u)=1lim f(u)= f(x) and lim f(v)=1lim f(v)= f(x).

h—0 u—Xx h—0 V—X

Then by squeezing Theorem, we have:

g'(x)=lim g(x+ hh)_ 9(x) _ f(x).

h—0

g
Example 1: Find &L e dt

Solution: Let g(x I edt. Since f(t)=e" is continuous on [0, x], then by the
Fundamental Theorem of Calculus, we get:

2

- j edt = f(x

Example 2: Use the first part of the Fundamental Theorem of Calculus to find the
derivative of the function:
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a) f(x)= IOXSi”[%ZJdt b) 9(y)= Izytz sintdt

¢) f(x)= cos(t? )t d) h(x)= Litanltdt

| xt?
Solution: a) since g(t):sm(%J IS continuous on [O, x] forx =0, then by the

Fundamental Theorem of Calculus:

b) The function f(t)=t?sint is continuous on [2,t]for t > 2 Then the FTC of part I,
we have

g'(y)=y*siny
c) f(x)= '[: cos(t2 )dt = —LX cos(tzﬁt by property of definite Integral.

Then by the FTC of part I, we obtain:
f'(x) = —cos(x?)

d) We use The FTC I together with the Chain rule.

Let f(x)zi and g(x)= LX tan tdt

-1 .
f'(x)= = and gf (x) = tan™* x. Then we can express h(x) as a composition of f and

g, i.e.

1
h(x)=g(f(x))= _L?tan’l tdt . Then by Chain rule
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= —iztan‘l(lj
X X

The Fundamental Theorem of Calculus, Part 11 (FTC I1): If F is continuous
b
on [a, b], then L f(x)dx = F(b)~ F(a) , where F is any anti derivative of f, that

is a function such that F' = f

Proof: Letg(x)=j:f(t)dt. We know from part 1 thatg'(x)= f(x): that is g is an

antiderivative of f. If F is any anti derivative of f on [a, b] then F and g differ by a
constant. That is:

F(x)=g(x)+c,fora<x<b (1)

But both F and g are continuous on [a, b]. So by taking limits on both sides of (1), we
have:

Im F(x)= Im (g(x)+c)and Im F(x)= Im (g(x)+c)

=F(@)=g(@)+c ad Fb)=gb)+rc
If we put x = a in the formula for g(x), we get:
g(a)=[ f(t)dt=0 3)

Now using equation (2) and (3) we have:
F(b)-F(a)=g(b)+c—(g(a)+c)=g(b)-g(a)=g(b)= |

Therefore,

3
Example 1: Evaluate L x*dx
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2

Solution:  The function f(x)=x* is continuous on [1, 3] and we know that an
X3

antiderivative of x* is F(x)= 5

So, part 1l of FTC gives:

5, 27 1 26
dx=F(@)-FQ)=2->=2
[ xdx=F()-FQ) 3 3" 3

Notice that the FTC Il says that we can use any anti derivative F of f. So we use the
3 3 3

simplest one namely, F(x):% instead of F(x):%+4 or F(x):%+c

Notation: We often use the notation;
Lb f(x)ix=F(x)," = F(b)-F(a)

21
Example 2: Evaluate L Fdx

Solution: This calculation must be wrong because the answer is negative but

f (x) = x_12 >0, which contradicts one of the properties of definite integral.

The FTC of Part 11 cannot be applied here since f is discontinuous at x= 0 in

2 1 .
[-1, 2]. Therefore .LX_ZdX does not exist

2 2
Example 4: Evaluate L xe™ dx

Solution:
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Let u = x>
1
du =2xdx = xdx = Edu
First we will compute the indefinite integral:
.[xexzdx = Iexz xdx = jle”du = leu +Cc= Eexz +C
2 2 2

Now we have two approaches for the definite integral:

Approach 1 Approach 2
Substitution back to the original variable Change the limit of Integration
x2 1 x? i 2
jxe dx:Ee Since u = x
So, u=0whenx=0
2 1 |
Lxex dx=bex} :E(“—l) and u=4when x =2
0

2 o 41, 1,7 1
So, J'O xe dx:J'OEe du:be L 25(64_1)

Thus we find that:
2 Xy 1.4
jo xe* dx = E(e —1)
Approach 2 works provided certain conditions on f and g meet:

J; f(@()g(xlax= [ ()

a

If
1. g'is continuous on [a, b]

2. T is continuous on the set of values taken by g on [a, b].
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Example 5: Evaluate j —dx
solution : Let u =1Inx
du = Ldx
X

When x=1Lu=In1=0;whenx=¢e,u=Ine=1Thus
2 1

J-In_de: ludu:{u—} _L
0

The next Theorems use the substitution rule for definite integrals to simplify the

calculation of functions that possess symmetry properties.

Integrals of symmetric functions: suppose f is continuous on [a, b].

a. If fis even, then f(—x)= f(x andJ' X)dx = ZI (x)dx

b. If fis odd, then f(~x)=—f(x).and [ f(x)dx=0

Proof: We split the integral in to two:

fa f (x)dxdx = fa f(x)dx + joa f (x)dx
= —J‘O f (x)dx + '[0 f(x)dx (@)
In the first integral on the right side of (1), substitute u = -x (x = -u)

Then du = -dx and when x =0,u=0; when X =-a, u=a

Therefore,

—J;a (x)dx = I f(-u)-du)= I f(~u)du

So equation 1 becomes:

fa f(x)dx = La f(—u)du+ Ioa f (x)dx )

a. Iffiseven, then f(—u)=f (u),so equation (2)gives:
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J'_aa f(x)dx = 2'|.0a f(x)dx

b. Iffisodd, then f (—u)=—f(u)and so equation (2)gives:

[ t(x)x=0

—a

Example 5: Evaluate

Il tan x

o [ +2)ex R Evecrry

Solution:

a. Since f(x)=x® +1 satisfies f(-x)= f(x), itis even and so,

fz x° +1)dx = ZLZ (x6 +1)dx

2
ZFX7 +x} :2(@+2j:&
7 0 7 7

tan x

2 4

satisfies f(—x)=—f(x),it s odd and so,
1+Xx°+x

b. Since f(x)=

fl tan x dx =0

1+ x? +x*

® - The substitution Rule for definite integrals:

If g’ is continuous on [a, b] and f is continuous on the set of values taken by g

on [a, b], then

Lb f(g(x))g'(x)dx = J'gg((:))f (u)du

Integration by parts “works” on definite integrals as well:

1
Example 6: Evaluate Ltan‘lxdx
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Let
u = tan*(x) du = dx

du = L

=1 de u=x
+ X

Then by integration by parts,

1N A Yt X
jotan (x)= xtan (XXO—IOl+X2dx

- xtan‘l(x)(%,—%ln(ljt xzﬁ

(5-0)-(zre-)

:%—In(ﬁ)

Key Concepts

The Fundamental Theorem of Calculus: Suppose f is continuous on [a, b]

1 If g(x):j: f(t)dt, then g'(x)= f(x)

2. I: f(x)dx = F(b)— F(a), where F is any anti derivative of f , i.e. F'= f

3

x| _1
5] 2

1

Example 3: J.lsxdx =
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Area = Area (of larger
A') —area (smaller

y=x triangle)
a Ly 1ol
= 5(32) 2[12]_4

2
If we have chosen a different anti derivative X7+c , the outcome would have been

identical.

Chapter 4: Application of Integration

4.1: Computing Area between two curves

We have seen if y = f(x) is continuous and nonnegative on [a, b], then the area of the
region under the curve y = f(x) on [a, b] is given by:

Area = Lb f(x)dx .

Now we will discuss the area of the region bounded between two curves.

If f(x)>g(x) for all x in [a, b], then the area A of the region between the
graphs of fand g and x = a, x = b is given by:

A=L (- g0
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y=Tx)

Y=g

,

Area = (area under the curve f(x)) — (Area under the curve g(x))

We are trying to find the area between two curves y = f(x) and y = g(x) and the lines x =
aand x =h.

We can see that if we subtract the area under the lower curve y = g(x) from the area

under the upper curve y = f(x), then we will find the required area. This can be achieved
in one step;

A= [ (100~ 9(x)ox

Alternative way to find the formula (First principles)

Another way of deriving this formula is as follows (the thinking here is important for
understanding how we develop the later formulas in this section)

Each “typical” rectangle indicated as width dx and height f(x) — g(x), so its area is

( () - g(x))ex.

If we add all these typical rectangles, starting from and finishing at b, the area is
approximately:

M=

(f(x)-g(x))dx . Now if we letdx — 0, we can find the exact area by integration.
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Likewise, we can sum vertically by re expressing both functions so that they are

functions of y and we find:

A=["(1(y)-aly))y

Examplel: Find the area between the curves y = x> +5x and y =3-x°

between x =-2and x =0

y = x* +5x

So we need to find:

A= J‘_Oz ((3_ xz)— (x2 + SX)):IX = 'f_oz

32 .
L= 3 square unit.

Example 2: Find the area of the region bounded by the curves
y=x?,y=2-xand y=1

Solution: First sketch the region.
We need to take horizontal elements in this case.

So we need to solve y = x> for x
x=+]y
We need the left hand portion, so X = —ﬁ
Notice that x = 2 —y to the right of Xx=—,/y , so we choose:

X, =2-Y and X =—\/§.
The intersection of the graphs occurs at (—2,4) and (L1)

Addis Ababa University , CNCS

244



y=x2

y=2-x

Sowehavec=1andd=4

A=[(2-y) -y )y
:L4(2—y+ szdy

4

1 2 2 7 29
=|2y-=y?+Zy?| =12—-—="=
{y 3y 3y} 3 3

1

A = 2—; sg. units

4.2 Computing Displacement

We have seen that given a position function s(t)at any time t we can determine the
velocity function and the acceleration function at any time t by finding the first and
second derivative of the position function. Now we reverse the process, that is, knowing
the velocity and the acceleration of a moving object any time t, we can recover the
position function from the velocity as well as from the acceleration function.

That is

)= 450 ang ()= MO _d s
dt

dt dt?
It follows (since integration is the opposite process to differentiation) that to obtain the
displacement, s of an object at time t (given the expression for velocity, v) we would use:
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s(t) = [v(t)dt

Similarly the velocity of an object at time t, given the acceleration a(t) is given by:

Example 1: A proton moves in an electric field such that its acceleration (incm/s?) is:
a(t)=—20(1+2t)*, where t is in seconds.
Find the velocity as a function of time if v =30cms™ when t = 0.

Solution:
v =Ia(t)dt
-20
So, v=|—"dt
I@+ﬂy
Putu =1+ 2t, then du = 2dt
-10 10 10
v=I —du="—+cC= +C
u u 1+ 2t

Whent =0, v =30, so, ¢c = 20.

+20 cm/s.

So the expression for velocity as a function of time is v(t) = oot
+

Example 2: A flare is ejected vertically upwards from the ground at 15m/s.Find the
height of the flare after 2.5 s.

Solution:
The object has acting on it the force due to gravity, so its acceleration is 9.8ms ™.
v(t)=[a(t)dt = [-9.8dt =-9.8t +c
Now at t = 0, the velocity v = 15cm/s, so ¢ = 15
So the expression for velocity becomes:
v(t)=-9.8t +15
Now we need to find the displacement s.
s(t)= [v(t)dt = [(-9.8t +15)dt
=-4.9t> +15t +k .

But we have given that whent=0s =0, this givesus k=0
Therefore,

s(t)=—4.9t* +15t.
Hence at timet=2.5s=6.875 m.
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Using Integration, we can obtain the well-known expression for displacement and
velocity, given a constant acceleration a, initial displacement zero, and an initial velocity

v,
v=[a(t)dt

v =at+cC
Since the velocity att =0 isv,, we get ¢ =v,, so that

vV =y, +at

Similarly,
s = [v(t)dt = [ (v, +at)dt

S=V,t +%at2 +k . Since the displacement at t = 0 is s = 0 we have k = 0 and so

1
S :v0t+§at2

Key Concepts

If the object has position functions = f(t), then

1. The velocity function is v(t)=s'(t)
2. The acceleration function v(t)=s'(t)

This means that, the position function is an antiderivative of the velocity function and the
velocity function is an antiderivative of the acceleration function.

4.3 Computing work done by force

In this section we will be looking at the amount of work that is done by a force in moving
an object. When a constant force, F, moving an object over a distance of d the work is,

W =Fd
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However, most forces are not constant and will depend upon where exactly the force is
acting. So, let’s suppose that the force at any x is given by F(x). Then the work done by
the force in moving an object from x = a to x = b is given by

w = be(x)dx

Notice that if the force is constant we get the correct formula for a constant force.
b
W= f Fdx
a

= Fx|?
=F(b—a)
where b — a is simply the distance moved, or d.

Example 1: A spring has a natural length of 20 cm. A 40 N force is required to stretch
(and hold the spring) to a length of 30 cm. How much work is done in stretching the
spring from 35 cm to 38 cm?

Solution: This example will require Hooke’s Law to determine the force. Hooke’s Law
tells us that the force required to stretch a spring a distance of x meters from its natural
length is, F(x) = kx where k > 0 is called the spring constant. It is important to
remember that the x in this formula is the distance the spring is stretched from its natural
length and not the actual length of the spring.

So, the first thing that we need to do is determine the spring constant for this spring. We
can do that using the initial information. A force of 40 N is required to stretch the spring

30cm — 20cm = 10cm = 0.1cm
from its natural length. Using Hooke’s Law we have,
40 = 0.10k =>k = 400

So, according to Hooke’s Law the force required to hold this spring x meters from its
natural length is,

F(x) = 400x
We want to know the work required to stretch the spring from 35cm to 38cm. First, we

need to convert these into distances from the natural length in meters. Doing that gives
us x's of 0.15m and 0.18m.
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The work is then,

0.18

W = 400xdx
0.15

- 200218

= 1.98)

Example 2: A 20 ft cable weighs 80 Ibs and hangs from the ceiling of a building without
touching the floor. Determine the work that must be done to lift the bottom end of the
chain all the way up until it touches the ceiling.

Answer: 400 ft/lb

4.4 Computing Volume of solids of revolution

Another important application of the definite integral is its use in finding the volume of a
three dimensional solid. In this section you will study a particular type of three
dimensional solid one whose cross sections are similar. You will begin with solid of
revolution.

A solid of revolution is formed by revolving a plane region about a line. The line is
called the axis of revolution.

VVolume by the disk method:

The disk method:

The volume of the solid formed by revolving the region bounded by the graph of f and
the x- axis between x =a and x = b is given by:

volum = _[: 7(f(x))*dx
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A y
Representative recatngle _"————________
Planz
region
w=8 ﬂx x=h %
wertical cross section
b
=i
fp
Y=
= x
Harizortal cross
section
Example 1: Find the volume of the solid formed by revolving the region bounded
by the graph of f (x) = x—x* and the x- axis about the x — axis .
Solution: First Sketch the graph.
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Sketch a representative rectangle whose height is f(x) and whose width is AX . From this
rectangle the radius of the solid isr = f(x)=x—x”.
Using the disk method, we have:

V= ﬂ_[ol f(x)’dx = ﬂj:(x—xz)zdx

= ﬂJj(XA —2x% + xz}lx

5 4 3}
XXX 7 L0105
5 4 3| 30

Example 3: Find the volume of the solid formed by revolving the region bounded
by x*—2x*+x* y=x3,y=8,y=0and x = 0 about the y- axis.

Solution: First sketch the region.
The region has horizontal cross section.
The radius of the disk at any point betweeny =0andy =8 is

x=3/y = f(y)
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Then using the disk method, we have:

V=l (1) dy=[/y) ay

-] vy

Therefore,V = —nx

The Washer Method

We can extend the disk method to find the volume of a solid of revolution with a hole.

Consider a region that is bounded by the graphs of f and g as shown in the figure below.
If the region is revolved about the x — axis, then the volume of the resulting solid can be

found by applying the disk method to f and g and subtracting the results.

That is,

Volume = 7Z'I: f(x)*dx — EI: g(x)*dx = 7Z'J-: [f (x)* —g(x)’ ]dx

The Washer Method:

f and g between x =aand x = b is:

V= [#(0? - g(x)? | dx.

f(x) is the outer radius and g(x) is the inner radius

Let f and g be continuous and non-negative on the closed interval, then the
volume of the solid formed by revolving the region bounded by the graphs of
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Geometrical description

o ——y = f(x)
y =9(x) >

a b X
Plane region

Axis of

\ } \ I revolution

Solid of revolution
with hole

Example 1: Find the volume of the solid formed by revolving the region bounded by the
curves y =x and y = x* about the X — axis.
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Solution: The two curves intersect at x =0 and x = 1.

The outer radius is x and the inner radius is X”.
Then by the washer method, the volume of the solid is:

V= ﬂI:(xz —(xz)z)dx = ﬂI:(xz —x“) dx

Therefore,
V = gﬂ .
3

Example 2: Find the volume of the solid formed by revolving the region enclosed by the
curves y =x and y = x* about the line y = 2.

A b

)
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Solution: The outer radius of the disk is 2— x® and the inner radius of the disk is 2 — x.

Then by the washer method, the volume of the resulting solid is:
% =7Z'J.1[2—X2 —(2-x 2]dx

—ﬂI —5x% +4x dx

5 1
=r X——§X3+2X2 =E7r
5 3 15

0

Therefore, V = i;z
15

4.5. Computing Length of plane curves

Definition: Let a function : [a, b] = R, and a smooth curve C be given by y = f(x),

x € [a, b]. Then the arc length of C is equal to

b
2(C) = j V14 (f'(x)2%dx

a
Definition: Let a function : [c,d] = R, and a smooth curve C be given by x = g(y),

y € [c,d]. Then the arc length of C is equal to

d
i’(C)=f V1+ (' )*dy

Examples: (1) Let y = x, x € [2, 4]. Find its arc length.

Solution:
4 ; 4 A B .
£(0) = [, 1+ (x)2dx = [, 1+ (1)2dx = [, V2dx = 2v/2 units
6
(2) Lety = 2;{:11 € [1,2]. Find its arc length.
Solution:
2
£(C) = ff\/l + (x3 —4}%) dx = g units

EXRECISE ON INTEGRATION AND ITS APPLICATION

1. Find the following indefinite Integrals.

) [(2x+3x7 )x b) j —dx c) j(‘VF +3/x* )dx

d) j’jx_‘sld e) [(2t? -1fat

2. Find a function f that satisfies the given conditions.
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a) f'(x)=3Vx+3, f(1)=4 b) f'(x)=+/x(6+5x), f(1)=10
3

c) f"(t)=—, f(4)=20, f'(0)=
) 1= 1) (0)
3. Evaluate the following integrals.
a)j b) js'”f ¢) [———dx
x +1 xInx
et dx . 2
d e) [/xsin| 1+ x? |dx f 1+2x
) L X~+/In x ) I ( ] ) I

4. Find the general solution of F’(x) = 2X—2, and find the particular solution that
satisfies the initial condition F (1) = 2.

5. A particle moves in straight line and has acceleration given by a(t) =6t+4.
Its initial velocity v(O) =9cm/s and its initial displacement s(O): 9cm .
Find its position function.

6. A ball is thrown up ward with a speed of 48 ft /s from the edge of a cliff 432 ft above

the ground. Then

a) Find its height above the ground t seconds later.
b) When does it reach its maximum height?

c) When does it hit the ground?

7. Evaluate the integral

a) sz(simzx)dx b)J' ?Inx g c) '[cosxln(sin X )dx

2 2 1
c) jo—dt d) _[\/1—4x ) Ifz—xs\/xz——1dx
t2 -1 . X
9 | Gt h) I b oxed] dx i) [v/xe*dx

) [ 9 [
w/ti\/f +1i ’13\/1—2X

. . - d
8) Show that the improper integral L X—): converges for all real number p > 1 and

diverges for all real number p >1.

9. Find the area of the region bounded by the curves y =e*, y = x and by the lines
x=0andx=1

10. Find the area of the region bounded by the following curves.
a) x=4y-y®> andx=2y -3 byy=e*-1, y=x"-x,x=1
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11. Find the area of the region bounded by the curves y =1—x* and y = 3x* between
x=0andx=1

12. Find the volume of the solid formed by revolving the region bounded by the graph
of the equations about the x — axis.

a) y=+sinx,x=0and Xx=r b) y=+/25-x* and g(x):gx

13. Find the volume of the solid formed by revolving the region bounded by the graphs
of the equations about the y — axis.

a) y=+v4-x,y=0,x=0 b) x:%y,x=0,y=0

) y=x*+1,y=0,x=0andx=1

Answer Key
30 -1 g !
1.a) x> +=x"" +c¢ b) —+c¢ C) —X*+cC
) 7 )2& )7
2 2 2 4
d) =x2+—+c e) —t® -2t +t+c
'3 Jx )3
1.7 1 21t
2.2) f(X)==x%2 +3x+= b) f(x)=4x2 +=x2 + ==
) 1(x)=3 > ) f(x) X+
d) f(t)=—4t> +4t+36
3.a) — 21 +c b) —2cos/x +¢ c) In[Inx|+c
2lx°+1
3
d) 2 e) —%sin(pr x2] f) %

4. F(x)=x*-2x+3
5. s(t)=t*+2t* —6t+9
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6.a) v(t)=—32t+48

b) The ball reached its maximum height at t = 1.5 seconds.

¢) The ball hits the ground after 6.95 seconds.

1, 2 . 2
7.) — X" COS 7iX + — XSiN 72X + —C0S 72X + C
T T T

¢) sinx(In(sinx—1))+c
€) %sin2(2x)+%x\/1—4x2 +c

9) 1sec{ij— t' -9 +C
6 3 2t?

3

i)%e“+c i) 2L+t )+c

b) - Lin2
2 2
g L3¢
4 4
f)£+£_l
24 8 4
1 Xx+1
h) Ztan*(x+1)+ ————
)2 (x+1) X2 +2X+2

k)—%—v§

+C

8. The improper diverges for all real numbers p > 1 and diverges for all other values of p.

9. Area =e —g sg. units

10. a) Area =% Sg. units b) Area = %sq. units

11. Area = % Sg. units.

12.
a) Volume = %n cubic units

b) Volume = 27 cubic units
13.

a) Volume = @n cubic units
15
b) Volume = g;r cubic units

c) Volume = gn' cubic units
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